
Simulink® Code Inspector™

Reference

R2011b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Code Inspector™ Reference
© COPYRIGHT 2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2011 Online only New for Version 1.0 (Release 2011b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Function Reference

1
Code Inspection . 1-2

Model Compatibility Checking . 1-4

Class Reference

2
Code Inspection . 2-1

Functions — Alphabetical List

3

Model Configuration Constraints Reference

4
About Model Configuration Constraints Reference . . . 4-2

Model Configuration Constraints 4-4
Simulink Configuration Parameters 4-4
Other Modelwide Attributes . 4-17

iii

Block Constraints Reference

5
About Block Constraints Reference 5-2

Block Constraints — Alphabetical List 5-5
All Blocks . 5-6
Abs . 5-7
Bus Assignment . 5-8
Bus Creator . 5-8
Bus Selector . 5-9
Constant . 5-9
Data Store Memory . 5-10
Data Store Read . 5-10
Data Store Write . 5-11
Data Type Conversion . 5-11
Data Type Duplicate . 5-12
Demux . 5-12
From . 5-13
Gain . 5-13
Goto . 5-14
Inport . 5-14
Logical Operator . 5-14
Math Function . 5-15
MinMax . 5-16
Model . 5-16
Multiport Switch . 5-17
Mux . 5-17
Outport . 5-18
Product . 5-18
Relational Operator . 5-19
Saturation . 5-19
Selector . 5-20
S-Function . 5-20
Signal Conversion . 5-21
Subsystem . 5-22
Sum, Add, Subtract . 5-22
Switch . 5-23
Terminator . 5-23
Trigonometric Function . 5-24
Unit Delay . 5-24

Supported Blocks — By Category 5-25

iv Contents

Commonly Used Blocks . 5-25
Discontinuity Blocks . 5-26
Discrete Blocks . 5-26
Logic and Bit Operation Blocks . 5-26
Math Operation Blocks . 5-26
Port & Subsystem Blocks . 5-27
Signal Attribute Blocks . 5-27
Signal Routing Blocks . 5-27
Sink Blocks . 5-28
Source Blocks . 5-28
User-Defined Functions . 5-28

Model Advisor Checks

6
Simulink® Code Inspector Checks 6-2
Simulink® Code Inspector Checks Overview 6-4
Check code generation settings . 6-5
Check data import/export settings . 6-9
Check diagnostic settings . 6-10
Check hardware implementation settings 6-12
Check model reference settings . 6-14
Check optimization settings . 6-15
Check solver settings . 6-18
Check for unconnected objects in the model 6-19
Check system target file setting . 6-20
Check function specification setting 6-21
Check model arguments . 6-22
Check for unsupported blocks . 6-23
Check for tunable workspace variables 6-24
Check for sample times in the model 6-25
Check for usage of global data stores 6-26
Check usage of Sources blocks . 6-27
Check usage of Signal Routing blocks 6-30
Check usage of Math Operations blocks 6-42
Check usage of Signal Attributes blocks 6-49
Check usage of Logical and Bit Operations blocks 6-52
Check usage of User-Defined Function blocks 6-55
Check usage of Ports and Subsystems blocks 6-57
Check usage of Discontinuities blocks 6-60
Check usage of Sinks blocks . 6-62

v

Check usage of Discrete blocks . 6-64
Check usage of root Outport blocks 6-66
Check usage of buses . 6-67

Simulink® Code Inspector Dialog Box
Parameters

7
Simulink Code Inspector Dialog Box 7-2
Simulink Code Inspector Dialog Box Overview 7-4
This is the top of the model hierarchy 7-5
Inspect all referenced models . 7-6
Omit model from code inspection if it fails compatibility
check . 7-7

Generate code before code inspection 7-8
Code placement . 7-9
Code folder . 7-10
Report folder . 7-11

vi Contents

1

Function Reference

Code Inspection (p. 1-2) Inspect code generated from a model

Model Compatibility Checking
(p. 1-4)

Prepare for code inspection

1 Function Reference

Code Inspection

getCodeFolder (slci.Configuration) Return code folder for code inspection

getCodePlacement
(slci.Configuration)

Return code placement for code
inspection

getFollowModelLinks
(slci.Configuration)

Return model reference handling for
model compatibility checking or code
inspection

getGenerateCode
(slci.Configuration)

Return code generation option for
code inspection

getReportFolder (slci.Configuration) Return report folder for code
inspection

getTerminateOnIncompatibility
(slci.Configuration)

Return termination option for code
inspection

getTopModel (slci.Configuration) Return top-model attribute for code
inspection

inspect (slci.Configuration) Inspect code generated from model

setCodeFolder (slci.Configuration) Specify code folder for code inspection

setCodePlacement
(slci.Configuration)

Specify code placement for code
inspection

setFollowModelLinks
(slci.Configuration)

Specify model reference handling for
model compatibility checking or code
inspection

setGenerateCode
(slci.Configuration)

Specify whether to generate code
before code inspection

setReportFolder (slci.Configuration) Specify report folder for code
inspection

setTerminateOnIncompatibility
(slci.Configuration)

Specify whether to terminate code
inspection if model is incompatible

1-2

Code Inspection

setTopModel (slci.Configuration) Specify whether model being
configured for code inspection is top
model

slci.Configuration Create code inspection object

1-3

1 Function Reference

Model Compatibility Checking

checkCompatibility
(slci.Configuration)

Check model compatibility with code
inspection

getFollowModelLinks
(slci.Configuration)

Return model reference handling for
model compatibility checking or code
inspection

setFollowModelLinks
(slci.Configuration)

Specify model reference handling for
model compatibility checking or code
inspection

slci.Configuration Create code inspection object

1-4

2

Class Reference

Code Inspection

slci.Configuration Control code inspection and
compatibility checking for a model

2 Class Reference

2-2

3

Functions — Alphabetical
List

slci.Configuration.checkCompatibility

Purpose Check model compatibility with code inspection

Syntax [results] = checkCompatibility(cfgObj)
[results] = checkCompatibility(cfgObj, Name, Value)

Description [results] = checkCompatibility(cfgObj) checks a model for
compatibility with the code inspection process and returns objects
containing results information.

[results] = checkCompatibility(cfgObj, Name, Value)
additionally applies the settings specified in name-value pair
arguments.

This method runs the Simulink® Code Inspector™ compatibility checker
to determine if a model complies with the constrained set of modeling
semantics and code optimizations supported by the code inspection
process.

You can use the methods slci.Configuration.getFollowModelLinks
and slci.Configuration.setFollowModelLinks to configure whether
the scope of the compatibility check encompasses referenced models.

Tips Before running the Code Inspector on a model, run compatibility checks
repeatedly until the model is compatible.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name
is the argument name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1, ,NameN,ValueN.

3-2

slci.Configuration.checkCompatibility

DisplayResults

Specify whether to display results of the compatibility checks.

Value Description

'Summary' (default) Displays a summary of the
model results in the Command
Window.

'Details' Displays the following in the
Command Window:
• Which system is being
checked while the run is in
progress

• For each system, the pass
and fail results of each
check.

• A summary of the system
results.

'None' Displays no information in the
Command Window.

Default: `Summary'

Output
Arguments

results Cell array of ModelAdvisor.SystemResult
objects, one for each model checked. Each
ModelAdvisor.SystemResult object contains
an array of CheckResultObj objects.

CheckResultObj Array of ModelAdvisor.CheckResult objects,
one for each check that runs.

Examples This example shows how to programmatically run the compatibility
checker and report results.

3-3

slci.Configuration.checkCompatibility

fprintf('\nInvoking compatibility checker ...\n');

config = slci.Configuration('slcidemo_roll');

result = config.checkCompatibility('DisplayResults','None');

for i = 1:length(result)

fprintf('\nModel ''%s'' passed %d checks with %d issues.',...

result{i}.system,...

result{i}.numPass, result{i}.numWarn + result{i}.numFail)

end

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run model
compatibility checks.

See Also slci.Configuration.getFollowModelLinks |
slci.Configuration.setFollowModelLinks

How To • “Model Compatibility Checking”

• “Code Inspection”

3-4

slci.Configuration.getCodeFolder

Purpose Return code folder for code inspection

Syntax folder = getCodeFolder(cfgObj)

Description folder = getCodeFolder(cfgObj) returns the path to a code folder,
as previously specified using slci.Configuration.setCodeFolder.
Use this method only if you are inspecting previously generated code
that has been repackaged to reside in a single, user-defined folder, as
specified using slci.Configuration.setCodePlacement.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

folder String specifying a folder path or, if you have
not previously set a code folder value, ''
(default).

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setCodePlacement('Single folder')

>> config.setCodeFolder(fullfile('C:','packngo','model1'))

>> pkg = config.getCodePlacement()

pkg =

Single folder

>> folder = config.getCodeFolder()

folder =

C:\packngo\model1

>>

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run code
inspection.

3-5

slci.Configuration.getCodeFolder

See Also slci.Configuration.setCodeFolder |
slci.Configuration.setCodePlacement

How To • “Code Inspection”

3-6

slci.Configuration.getCodePlacement

Purpose Return code placement for code inspection

Syntax value = getCodePlacement(cfgObj)

Description value = getCodePlacement(cfgObj) returns the value of a code
inspection option that specifies whether generated code has been
repackaged to reside in a single, user-defined folder. The value is
meaningful only if you are inspecting previously generated code.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value String specifying one of the following values:
• Single folder if the generated code has
been repackaged to reside in a single,
user-defined folder.

• Embedded Coder default (default) if the
generated code resides in the default folders
created by code generation.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setCodePlacement('Single folder')

>> config.setCodeFolder(fullfile('C:','packngo','model1'))

>> pkg = config.getCodePlacement()

pkg =

Single folder

>> folder = config.getCodeFolder()

folder =

C:\packngo\model1

>>

3-7

slci.Configuration.getCodePlacement

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.setCodePlacement |
slci.Configuration.setCodeFolder

How To • “Code Inspection”

3-8

slci.Configuration.getFollowModelLinks

Purpose Return model reference handling for model compatibility checking or
code inspection

Syntax value = getFollowModelLinks(cfgObj)

Description value = getFollowModelLinks(cfgObj) returns the value of a code
inspection option that specifies whether model compatibility checking
and code inspection should be performed for all descendants of this
model in the model reference hierarchy.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value True if model compatibility checking and
code inspection should be performed for
all descendants of this model in the model
reference hierarchy; false otherwise. The
default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setFollowModelLinks(true)

>> value = config.getFollowModelLinks()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run model
compatibility checking and code inspection.

See Also slci.Configuration.setFollowModelLinks

3-9

slci.Configuration.getFollowModelLinks

How To • “Code Inspection”

• “Model Compatibility Checking”

3-10

slci.Configuration.getGenerateCode

Purpose Return code generation option for code inspection

Syntax value = getGenerateCode(cfgObj)

Description value = getGenerateCode(cfgObj) returns the value of a code
inspection option that specifies whether to generate model code as part
of code inspection.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value True if model code should be generated at the
beginning of code inspection; false otherwise.
The default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setGenerateCode(true)

>> value = config.getGenerateCode()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.setGenerateCode

How To • “Code Inspection”

3-11

slci.Configuration.getReportFolder

Purpose Return report folder for code inspection

Syntax folder = getReportFolder(cfgObj)

Description folder = getReportFolder(cfgObj) returns the path to a folder in
which code inspection places code inspection report artifacts.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

folder String specifying a folder path. If you have
not previously set a report folder value, the
default is slprj/slci, relative to the location
of the model.

Examples >> pwd

ans =

C:\work

>> config = slci.Configuration('mymodel');

>> folder = config.getReportFolder()

folder =

C:\work\slprj\slci

>> config.setReportFolder(fullfile('C:','work','mymodel_report'));

>> folder = config.getReportFolder()

folder =

C:\work\mymodel_report

>>

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run code
inspection.

3-12

slci.Configuration.getReportFolder

See Also slci.Configuration.setReportFolder

How To • “Code Inspection”

3-13

slci.Configuration.getTerminateOnIncompatibility

Purpose Return termination option for code inspection

Syntax value = getTerminateOnIncompatibility(cfgObj)

Description value = getTerminateOnIncompatibility(cfgObj) returns the
value of a code inspection option that specifies whether code inspection
terminates if a model fails compatibility checking. If termination is
selected, model code generation (if requested) also does not occur.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value True if code inspection should terminate if a
model fails code inspection; false otherwise.
The default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setTerminateOnIncompatibility(true)

>> value = config.getTerminateOnIncompatibility()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.setTerminateOnIncompatibility |
slci.Configuration.checkCompatibility

How To • “Code Inspection”

3-14

slci.Configuration.getTerminateOnIncompatibility

• “Model Compatibility Checking”

3-15

slci.Configuration.getTopModel

Purpose Return top-model attribute for code inspection

Syntax value = getTopModel(cfgObj)

Description value = getTopModel(cfgObj) returns the value of a code inspection
attribute that specifies whether the model being configured for code
inspection is the top model in the model reference hierarchy. If the
model is not the top model, code inspection (and code generation if
requested) uses a model reference target rather than a top model target..

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value True if the model being configured for code
inspection is the top model in the model
reference hierarchy; false otherwise. The
default is true.

Examples The following example configures code inspection to use a model
reference target.

>> config = slci.Configuration('slcidemo_roll');

>> config.setTopModel(false)

>> value = config.getTopModel()

value =

0

>>

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run code
inspection.

3-16

slci.Configuration.getTopModel

See Also slci.Configuration.setTopModel

How To • “Code Inspection”

3-17

slci.Configuration.inspect

Purpose Inspect code generated from model

Syntax results = inspect(cfgObj)
results = inspect(cfgObj, Name, Value)

Description results = inspect(cfgObj) executes the code inspection process per
code inspection configuration parameters and creates and displays
a code inspection report.

results = inspect(cfgObj, Name, Value) additionally applies the
settings specified in name-value pair arguments.

Tips Before inspecting code generated from a model, run
slci.Configuration.checkCompatibility repeatedly,
modifying the model as appropriate, until the model is compatible with
code inspection.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name
is the argument name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1, ,NameN,ValueN.

DisplayResults

Specify whether to display inspection results.

3-18

slci.Configuration.inspect

Value Description

'Summary' (default) Displays a summary of the
model results in the Command
Window.

'Details' Displays the following in the
Command Window:
• Which system is being
inspected while the run is
in progress

• For each system, the pass
and fail results of each
inspection.

• A summary of the system
results.

'None' Displays no information in the
Command Window.

Default: `Summary'

Output
Arguments

results Structure containing the following fields:
• ModelName: String specifying the name of
the model for which code was inspected.

• Status: String specifying the status
returned by code inspection.

• ReportFile: String specifying the folder
containing the code inspection report.

Examples This example shows how to programmatically run the Code Inspector
and report results. The model is assumed to have previously passed
compatibility checks (see slci.Configuration.checkCompatibility).

3-19

slci.Configuration.inspect

config = slci.Configuration('slcidemo_roll');

config.setReportFolder(fullfile('.','report'));

result = config.inspect();

fprintf('Model %s status: %s\n',result.ModelName, result.Status);

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.checkCompatibility

How To • “Code Inspection”

• “Model Compatibility Checking”

3-20

slci.Configuration.setCodeFolder

Purpose Specify code folder for code inspection

Syntax setCodeFolder(cfgObj, folder)

Description setCodeFolder(cfgObj, folder) specifies the path to a folder
containing previously generated code to be inspected. Use this
method only if you are inspecting generated code that has been
repackaged to reside in a single, user-defined folder, as specified using
slci.Configuration.setCodePlacement.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

folder String specifying a folder path.

Examples In the following example, you call
slci.Configuration.setCodePlacement to specify that generated
code has been repackaged to reside in a single folder, and then call
slci.Configuration.setCodeFolder to specify the folder path.

>> config = slci.Configuration('slcidemo_roll');

>> config.setCodePlacement('Single folder')

>> config.setCodeFolder(fullfile('C:','packngo','model1'))

>> pkg = config.getCodePlacement()

pkg =

Single folder

>> folder = config.getCodeFolder()

folder =

C:\packngo\model1

>>

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run code
inspection.

3-21

slci.Configuration.setCodeFolder

See Also slci.Configuration.setCodePlacement |
slci.Configuration.getCodeFolder

How To • “Code Inspection”

3-22

slci.Configuration.setCodePlacement

Purpose Specify code placement for code inspection

Syntax setCodePlacement(cfgObj, codePlacement)

Description setCodePlacement(cfgObj, codePlacement) specifies whether
previously generated code retains the default folder structure
for generated code, or has been repackaged to reside in a single,
user-defined folder.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

codePlacement String specifying one of the following values:
• Single folder if the generated code has
been repackaged to reside in a single,
user-defined folder.

• Embedded Coder default (default) if the
generated code resides in the default folders
created by code generation.

Examples In the following example, you call
slci.Configuration.setCodePlacement to specify that generated
code has been repackaged to reside in a single folder, and then call
slci.Configuration.setCodeFolder to specify the folder path.

>> config = slci.Configuration('slcidemo_roll');

>> config.setCodePlacement('Single folder')

>> config.setCodeFolder(fullfile('C:','packngo','model1'))

>> pkg = config.getCodePlacement()

pkg =

Single folder

>> folder = config.getCodeFolder()

folder =

3-23

slci.Configuration.setCodePlacement

C:\packngo\model1

>>

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.setCodeFolder |
slci.Configuration.getCodePlacement

How To • “Code Inspection”

3-24

slci.Configuration.setFollowModelLinks

Purpose Specify model reference handling for model compatibility checking or
code inspection

Syntax setFollowModelLinks(cfgObj, followModelLinks)

Description setFollowModelLinks(cfgObj, followModelLinks) specifies whether
model compatibility checking and code inspection should be performed
for all descendants of this model in the model reference hierarchy.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

followModelLinks True if model compatibility checking and
code inspection should be performed for
all descendants of this model in the model
reference hierarchy; false otherwise. The
default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setFollowModelLinks(true)

>> value = config.getFollowModelLinks()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getFollowModelLinks

How To • “Code Inspection”

• “Model Compatibility Checking”

3-25

slci.Configuration.setGenerateCode

Purpose Specify whether to generate code before code inspection

Syntax setGenerateCode(cfgObj, generateCode)

Description setGenerateCode(cfgObj, generateCode) specifies whether to
generate model code as part of code inspection.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

generateCode True if model code should be generated at the
beginning of code inspection; false otherwise.
The default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setGenerateCode(true)

>> value = config.getGenerateCode()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getGenerateCode

How To • “Code Inspection”

3-26

slci.Configuration.setReportFolder

Purpose Specify report folder for code inspection

Syntax setReportFolder(cfgObj, folder)

Description setReportFolder(cfgObj, folder) specifies a folder in which code
inspection should place code inspection report artifacts.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

folder String specifying a folder path. If you have
not previously set a report folder value, the
default is slprj/slci, relative to the location
of the model.

Examples >> pwd

ans =

C:\work

>> config = slci.Configuration('mymodel');

>> folder = config.getReportFolder()

folder =

C:\work\slprj\slci

>> config.setReportFolder(fullfile('C:','work','mymodel_report'))

>> folder = config.getReportFolder()

folder =

C:\work\mymodel_report

>>

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getReportFolder

3-27

slci.Configuration.setReportFolder

How To • “Code Inspection”

3-28

slci.Configuration.setTerminateOnIncompatibility

Purpose Specify whether to terminate code inspection if model is incompatible

Syntax setTerminateOnIncompatibility(cfgObj, terminate)

Description setTerminateOnIncompatibility(cfgObj, terminate) specifies
whether code inspection terminates if a model fails compatibility
checking. If termination is selected, model code generation (if requested)
also does not occur.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

terminate True if code inspection should terminate if a
model fails code inspection; false otherwise.
The default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setTerminateOnIncompatibility(true)

>> value = config.getTerminateOnIncompatibility()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getTerminateOnIncompatibility |
slci.Configuration.checkCompatibility

How To • “Code Inspection”

• “Model Compatibility Checking”

3-29

slci.Configuration.setTopModel

Purpose Specify whether model being configured for code inspection is top model

Syntax setTopModel(cfgObj, top)

Description setTopModel(cfgObj, top) specifies whether the model being
configured for code inspection is the top model in the model reference
hierarchy. If the model is not the top model, code inspection (and code
generation if requested) uses a model reference target rather than
a top model target.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

top True if the model being configured for code
inspection is the top model in the model
reference hierarchy; false otherwise. The
default is true.

Examples The following example configures code inspection to use a model
reference target.

>> config = slci.Configuration('slcidemo_roll');

>> config.setTopModel(false)

>> value = config.getTopModel()

value =

0

>>

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getTopModel

3-30

slci.Configuration.setTopModel

How To • “Code Inspection”

3-31

slci.Configuration

Purpose Control code inspection and compatibility checking for a model

Description An slci.Configuration object configures code inspection and
compatibility checking for a model.

Construction slci.Configuration Create code inspection object

Methods checkCompatibility Check model compatibility with
code inspection

getCodeFolder Return code folder for code
inspection

getCodePlacement Return code placement for code
inspection

getFollowModelLinks Return model reference handling
for model compatibility checking
or code inspection

getGenerateCode Return code generation option for
code inspection

getReportFolder Return report folder for code
inspection

getTerminateOnIncompatibility Return termination option for
code inspection

getTopModel Return top-model attribute for
code inspection

inspect Inspect code generated from
model

setCodeFolder Specify code folder for code
inspection

3-32

slci.Configuration

setCodePlacement Specify code placement for code
inspection

setFollowModelLinks Specify model reference handling
for model compatibility checking
or code inspection

setGenerateCode Specify whether to generate code
before code inspection

setReportFolder Specify report folder for code
inspection

setTerminateOnIncompatibility Specify whether to terminate
code inspection if model is
incompatible

setTopModel Specify whether model being
configured for code inspection is
top model

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB® Programming Fundamentals documentation.

Examples The Simulink Code Inspector demo slcidemo_intro shows how to
programmatically run the compatibility checker and the Code Inspector
and report results. The demo also illustrates reporting of an error that
is purposely introduced into the generated code.

See also the reference pages for
slci.Configuration.checkCompatibility,
slci.Configuration.inspect, and other slci.Configuration
methods for individual call examples.

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run model
compatibility checks and code inspection.

How To • “Code Inspection”

3-33

slci.Configuration

• “Model Compatibility Checking”

3-34

slci.Configuration

Purpose Create code inspection object

Syntax cfgObj = slci.Configuration(modelName)

Description cfgObj = slci.Configuration(modelName) creates an object of class
slci.Configuration and returns a handle to it.

Input
Arguments

modelName Name of the model for which you are
configuring code inspection and compatibility
checking.

Output
Arguments

cdgObj Handle to code inspection object.

Examples This example creates a code inspection object, config, and uses it to
check the specified model for compatibility with code inspection.

config = slci.Configuration('slcidemo_roll');

result = config.checkCompatibility('DisplayResults','None');

for i = 1:length(result)

fprintf('\nModel ''%s'' passed %d checks with %d issues.',...

result{i}.system,...

result{i}.numPass, result{i}.numWarn + result{i}.numFail)

end

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run model
compatibility checks and code inspection.

How To • “Code Inspection”

• “Model Compatibility Checking”

3-35

slci.Configuration

3-36

4

Model Configuration
Constraints Reference

• “About Model Configuration Constraints Reference” on page 4-2

• “Model Configuration Constraints” on page 4-4

4 Model Configuration Constraints Reference

About Model Configuration Constraints Reference
Simulink Code Inspector requires that you set a subset of Simulink®

configuration parameters and other model attributes to specific values.
“Simulink Configuration Parameters” on page 4-4 presents required settings
for Configuration Parameters Dialog Box parameters and their equivalent
command-line parameters. “Other Modelwide Attributes” on page 4-17
presents required settings for other model attributes.

For each Configuration Parameters dialog pane or other model attributes
category, a table provides:

• The category name; dialog pane names link to the complete dialog pane
description

• Constraints that apply to each listed model configuration parameter or
model attribute

A sample table is shown below. For each entry:

• The Parameter column lists the dialog box name of the parameter, with
the command-line name of the parameter in parentheses. (For model
attribute entries, the first column identifies the attribute.)

• The Constraint column lists the Simulink Code Inspector constraint on
the model parameter or attribute.

• The FATAL / Nonfatal column identifies whether violation of the
constraint terminates code inspection. You can also configure code
inspection so that any constraint violation (FATAL or Nonfatal) terminates
code inspection.

• The Compatibility Check column lists the compatibility check that
checks for violation of the constraint, and links to a description of the check.

4-2

About Model Configuration Constraints Reference

Solver Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Type (SolverType) Must be set to Fixed-step. Nonfatal Check solver settings >
Verify ’Type’ setting

Solver (Solver) Must be set to Discrete
(no continuous
states) (equivalent
to FixedStepDiscrete
specified at the command
line).

Nonfatal Check solver settings >
Verify ’Solver’ setting

4-3

4 Model Configuration Constraints Reference

Model Configuration Constraints

In this section...

“Simulink Configuration Parameters” on page 4-4

“Other Modelwide Attributes” on page 4-17

Simulink Configuration Parameters

• “Solver” on page 4-5

• “Data Import/Export” on page 4-5

• “Optimization” on page 4-6

• “Optimization: Signals and Parameters” on page 4-7

• “Diagnostics: Data Validity” on page 4-8

• “Diagnostics: Connectivity” on page 4-9

• “Diagnostics: Model Referencing” on page 4-10

• “Hardware Implementation” on page 4-10

• “Model Referencing” on page 4-12

• “Code Generation: General” on page 4-12

• “Code Generation: Comments” on page 4-12

• “Code Generation: Symbols” on page 4-13

• “Code Generation: Custom Code” on page 4-13

• “Code Generation: Interface” on page 4-14

• “Code Generation: SIL and PIL Verification” on page 4-15

• “Code Generation: Code Style” on page 4-16

• “Code Generation: Data Type Replacement” on page 4-16

• “Code Generation: Not in GUI” on page 4-17

4-4

Model Configuration Constraints

Solver

Solver Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Type (SolverType) Must be set to Fixed-step. Nonfatal Check solver settings >
Verify ’Type’ setting

Solver (Solver) Must be set to discrete
(no continuous
states) (equivalent
to FixedStepDiscrete
specified at the command
line).

Nonfatal Check solver settings >
Verify ’Solver’ setting

Data Import/Export

Data Import/Export Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Input
(LoadExternalInput)

Must be cleared (set to off). Nonfatal Check data
import/export settings >
Verify ’Input’ setting

Initial state
(LoadInitialState)

Must be cleared (set to off). Nonfatal Check solver settings
> Verify ’Initial state’
setting

4-5

4 Model Configuration Constraints Reference

Optimization

Optimization Pane: General

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Implement logic
signals as Boolean
data (vs. double)
(BooleanDataType)

Must be selected (set to on). Nonfatal Check optimization
settings > Verify
’Implement logic signals
as Boolean data (vs.
double)’ setting

Remove root level
I/O zero initialization
(ZeroExternalMemory-
AtStartup)

Must be selected
(equivalent to setting
ZeroExternalMemory-
AtStartup to off, not on, at
the command line).

Nonfatal Check optimization
settings > Verify ’Remove
root level I/O zero
initialization’ setting

Use memset to
initialize floats
and doubles to 0.0
(InitFltsAndDblsTo-
Zero)

Must be cleared
(equivalent to setting
InitFltsAndDblsToZero
to on, not off, at the
command-line).

Nonfatal Check optimization
settings > Verify ’Use
memset to initialize
floats and doubles to 0.0’
setting

Remove internal data
zero initialization
(ZeroInternalMemory-
AtStartup)

Must be selected
(equivalent to setting
ZeroInternalMemory-
AtStartup to off, not on, at
the command line).

Nonfatal Check optimization
settings > Verify ’Remove
internal data zero
initialization’ setting

Optimize
initialization code
for model reference
(OptimizeModelRef-
InitCode)

Must be selected (set to on). Nonfatal Check optimization
settings > Verify
’Optimize initialization
code for model reference’
setting

4-6

Model Configuration Constraints

Optimization Pane: General

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Remove code from
floating-point to
integer conversions
that wraps
out-of-range values
(EfficientFloat2Int-
Cast)

Must be selected (set to on). Nonfatal Check optimization
settings > Verify ’Remove
code from floating-point
to integer conversions
that wraps out-of-range
values’ setting

Remove code from
floating-point to
integer conversions
with saturation that
maps NaN to zero
(EfficientMapNaN2Int-
Zero)

Must be cleared (set to off). Nonfatal Check optimization
settings > Verify ’Remove
code from floating-point
to integer conversions
with saturation that
maps NaN to zero’
setting

Optimization: Signals and Parameters

Optimization Pane: Signals and Parameters

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Inline parameters
(InlineParams)

Must be selected (set to on). FATAL Check optimization
settings > Verify ’Inline
parameters’ setting

Inline invariant
signals
(InlineInvariant-
Signals)

Must be selected (set to on). Nonfatal Check optimization
settings > Verify ’Inline
invariant signals’ setting

4-7

4 Model Configuration Constraints Reference

Optimization Pane: Signals and Parameters

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Simplify array
indexing
(StrengthReduction)

Must be cleared (set to off). Nonfatal Check optimization
settings > Verify
’Simplify array indexing’
setting

Use memcpy for
vector assignment
(EnableMemcpy)

Must be cleared (set to off). Nonfatal Check optimization
settings > Verify ’Use
memcpy for vector
assignment’ setting

Diagnostics: Data Validity

Diagnostics Pane: Data Validity

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Detect downcast
(ParameterDowncastMsg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
downcast’ setting

Detect overflow
(ParameterOverflowMsg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
overflow’ setting

Detect underflow
(ParameterUnderflow-
Msg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
underflow’ setting

Detect precision loss
(ParameterPrecision-
LossMsg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
precision loss’ setting

4-8

Model Configuration Constraints

Diagnostics Pane: Data Validity

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Detect loss
of tunability
(ParameterTunability-
LossMsg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
loss of tunability’ setting

Underspecified
initialization
detection
(Underspecified-
Initialization-
Detection)

Must be set to Simplified.
Configuring the model
to initialize block initial
conditions using simplified
behavior can improve the
consistency of model results.

Nonfatal Check diagnostic
settings > Verify
’Underspecified
initialization detection’
setting

Diagnostics: Connectivity

Diagnostics Pane: Connectivity

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Bus signal treated as
vector (StrictBusMsg)

Must be set to
error (equivalent to
ErrorOnBusTreatedAs-
Vector specified at the
command line).

FATAL Check diagnostic
settings > Verify Bus
signal treated as vector
setting

Non-bus signals
treated as bus signals
(NonbusSignalsTreated-
AsBus)

Must be set to error. FATAL Check diagnostic
settings > Verify
’Non-bus signals treated
as bus signals’ setting

4-9

4 Model Configuration Constraints Reference

Diagnostics: Model Referencing

Diagnostics Pane: Model Referencing

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Invalid root
Inport/Outport
block connection
(ModelReferenceIOMsg)

Must be set to error. This
setting disallows automatic
insertion of hidden signal
copy blocks at the model
inports and outports. If
an error is generated, it
identifies the locations at
which you can manually
insert Signal Conversion
blocks to avoid the error
and maintain traceability.

Nonfatal Check diagnostic
settings > Verify ’Invalid
root Inport/Outport
block connection’ setting

Hardware Implementation

Hardware Implementation Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Number of bits: char
(ProdBitPerChar)

Must be set to 8. Nonfatal Check hardware
implementation settings
> Verify ’char’ setting

Number of bits: short
(ProdBitPerShort)

Must be set to 16. Nonfatal Check hardware
implementation settings
> Verify ’short’ setting

Number of bits: int
(ProdBitPerInt)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’int’ setting

Number of bits: long
(ProdBitPerLong)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’long’ setting

4-10

Model Configuration Constraints

Hardware Implementation Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Number of bits: float
(ProdBitPerFloat)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’float’ setting

Number of
bits: double
(ProdBitPerDouble)

Must be set to 64. Nonfatal Check hardware
implementation settings
> Verify ’double’ setting

Number of bits:
native (ProdWordSize)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’native’ setting

Number of
bits: pointer
(ProdBitPerPointer)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’pointer’ setting

Signed integer
division rounds to
(ProdIntDivRoundTo)

Must be set to Zero. Nonfatal Check hardware
implementation settings
> Verify ’Signed integer
division rounds to’
setting

Shift right on a
signed integer as
arithmetic shift
(ProdShiftRightInt-
Arith)

Must be selected (set to on). Nonfatal Check hardware
implementation settings
> Verify ’Shift right
on a signed integer as
arithmetic shift’ setting

None (ProdEqTarget) Must be selected (set to on). Nonfatal Check hardware
implementation settings
> Verify ’None’ setting

4-11

4 Model Configuration Constraints Reference

Model Referencing

Model Referencing Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Total number of
instances allowed
per top model
(ModelReferenceNum-
InstancesAllowed)

Must be set to Multiple
(Multi at the command line)
or Zero. If set to Single,
the model interface might
fail validation.

Nonfatal Check model reference
settings > Verify ’Total
number of instances
allowed per top model’
setting.

Code Generation: General

Code Generation Pane: General

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

System target file
(SystemTargetFile)

Must be set to ert.tlc or
the system target file for an
ERT-derived target.

FATAL Check system target file
setting

Language
(TargetLang)

Must be set to C. FATAL Check code generation
settings > Verify
’Language’ setting

Code Generation: Comments

Code Generation Pane: Comments

Parameter Constraint FATAL /
Nonfatal

Compatibility Check

Include comments
(GenerateComments)

Must be selected (set to on).
The Code Inspector parses
autogenerated comments
to obtain traceability
information about model
data.

FATAL Check code generation
settings > Verify ’Include
comments’ setting

4-12

Model Configuration Constraints

Code Generation: Symbols

Code Generation Pane: Symbols

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Generate scalar
inlined parameter
as (InlinedPrmAccess)

Must be set to Literals. Nonfatal Check code generation
settings > Verify
’Generate scalar inlined
parameter as’ setting

Code Generation: Custom Code

Code Generation Pane: Custom Code

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Source file
(CustomSourceCode)

Must be unspecified (set to
'').

FATAL Check code generation
settings > Verify ’Source
file’ setting

Initialize function
(CustomInitializer)

Must be unspecified (set to
'').

Nonfatal Check code generation
settings > Verify
’Initialize function’
setting

Terminate function
(CustomTerminator)

Must be unspecified (set to
'').

Nonfatal Check code generation
settings > Verify
’Terminate function’
setting

4-13

4 Model Configuration Constraints Reference

Code Generation: Interface

Code Generation Pane: Interface

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Target function
library
(TargetFunction-
Library)

Must be set to C89/C90
(ANSI) in the Configuration
Parameters dialog box or
ANSI_C at the command
line.

Nonfatal Check code generation
settings > Verify ’Target
function library’ setting

Support: non-finite
numbers
(SupportNonFinite)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’non-finite numbers’
setting

Support:
absolute time
(SupportAbsoluteTime)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’absolute time’ setting

GRT compatible
call interface
(GRTInterface)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’GRT compatible call
interface’ setting

Single output/update
function
(CombineOutputUpdate-
Fcns)

Must be selected (set to on). Nonfatal Check code generation
settings > Verify ’Single
output/update function’
setting

Terminate
function required
(IncludeMdlTerminate-
Fcn)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’Terminate function
required’ setting

Generate
reusable code
(MultiInstanceERTCode)

Must be selected (set to on).
This check applies only to
the top model in a model
hierarchy.

Nonfatal Check code generation
settings > Verify
’Generate reusable code’
setting

4-14

Model Configuration Constraints

Code Generation Pane: Interface

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Pass root-level I/O as
(RootIOFormat)

Must be set to Individual
arguments. This check
applies only to the top
model in a model hierarchy.

Nonfatal Check code generation
settings > Verify ’Pass
root-level I/O as’ setting

Suppress error
status in real-time
model data structure
(SuppressErrorStatus)

Must be selected (set to
on). This helps prevent
generation of the rtModel
data structure, which is
not supported for code
inspection.

Nonfatal Check code generation
settings > Verify
’Suppress error status
in real-time model data
structure’ setting

MAT-file logging
(MatFileLogging)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’MAT-file logging’ setting

Interface
(RTWCAPIParams,
RTWCAPISignals,
RTWCAPIStates,
RTWCAPIRootIO,
ExtMode, and
GenerateASAP2)

Must be cleared
(RTWCAPIParams,
RTWCAPISignals,
RTWCAPIStates,
RTWCAPIRootIO, ExtMode,
and GenerateASAP2 must
be set to off).

FATAL Check code generation
settings > Verify Code
Generation > Interface >
Interface setting

Code Generation: SIL and PIL Verification

Code Generation Pane: SIL and PIL Verification

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Create block
(CreateSILPILBlock)

Must be set to None. Nonfatal Check code generation
settings > Verify ’Create
block’ setting

Measure function
execution times

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify

4-15

4 Model Configuration Constraints Reference

Code Generation Pane: SIL and PIL Verification

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

(CodeProfiling-
Instrumentation)

’Instrument generated
code for execution time
measurement’ setting

Code Generation: Code Style

Code Generation Pane: Code Style

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Preserve condition
expression in
if statement
(PreserveIfCondition)

Must be selected (set to on). Nonfatal Check code generation
settings > Verify
’Preserve condition
expression in if
statement’ setting

Code Generation: Data Type Replacement

Code Generation Pane: Data Type Replacement

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Replace data
type names in
the generated
code (EnableUser-
ReplacementTypes)

Must be cleared (set to off).
Data type replacement
is not supported for code
inspection.

Nonfatal Check code generation
settings > Verify ’Replace
data type names in the
generated code’ setting

4-16

Model Configuration Constraints

Code Generation: Not in GUI

Parameter Command-Line Information Summary

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

AdvancedOptControl Should be set to -SLCI.
This setting disables
optimizations that are
incompatible with Simulink
Code Inspector.

Nonfatal Check optimization
settings > Verify
’AdvancedOptControl’
setting

IncludeERTFirstTime Must be set to off. Nonfatal Check code generation
settings > Verify
’IncludeERTFirstTime’
setting

Other Modelwide Attributes

Attribute Constraint
FATAL /
Nonfatal Compatibility Check

Unconnected objects There must be no
unconnected lines, input
ports, or output ports in the
model or subsystem. This
helps prevent dead code and
hidden ground blocks.

Nonfatal Check for unconnected
objects in the model

Function specifications The model cannot specify
custommodel entry function
prototypes. Function
specification in the Model
Interface dialog box must
be set to Default model
initialize and step
functions.

Nonfatal Check function
specification setting

4-17

4 Model Configuration Constraints Reference

Attribute Constraint
FATAL /
Nonfatal Compatibility Check

Model arguments There must be no model
arguments defined for the
model.

Nonfatal Check model arguments

Unsupported blocks There must be no blocks
in the model that are not
supported by Simulink Code
Inspector.

Nonfatal Check for unsupported
blocks

Tunable workspace
variables

The model cannot reference
workspace variables
that are tunable. This
would require use of
storage classes, which are
not supported for code
inspection.

Nonfatal Check for tunable
workspace ariables

Usage of sample times The model cannot use
multiple, variable,
continuous, or
asynchronous sample
times.

FATAL Check for sample times
in the model

Usage of global data
stores

Data Store Read and Data
Store Write blocks cannot
reference externally-defined
signal objects as global
data stores. They trigger
creation of a hidden Data
Store Memory block at the
root level of the model,
which is not supported for
code inspection.

FATAL Check for usage of global
data stores

4-18

Model Configuration Constraints

Attribute Constraint
FATAL /
Nonfatal Compatibility Check

Root Outport block
sample times

Root Outport blocks
cannot specify a constant
(Inf) sample time. This
constraint prevents the root
outport assignment from
being moved to the model
initialize function, which
would cause the model
functions to fail validation.

Nonfatal Check usage of root
Outport blocks > Verify
sample times

Root Output block bus
passing method

A root Outport block that
passes a bus to a parent
model must pass the bus
as a structure. Otherwise,
Simulink software might
insert a hidden Signal
Conversion block in the
parent model, which is
not supported for code
inspection.

Nonfatal Check usage of root
Outport blocks > Verify
root Outports pass buses
to parent models as
structures

Automatic virtual
to nonvirtual bus
conversion

Automatic conversion
between virtual and
nonvirtual buses is
not supported for code
inspection. It creates a
hidden Signal Conversion
block, which is not
supported for code
inspection.

FATAL Check usage of buses
> Check for automatic
conversion between
virtual to non-virtual
buses

Block operations on a
bus

Nonvirtual blocks cannot
operate on a virtual bus,
and Unit Delay blocks
cannot operate on a virtual
or nonvirtual bus. This
constraint simplifies bus
processing to promote

FATAL Check usage of buses >
Verify that no blocks in
the model operate on a
virtual bus

4-19

4 Model Configuration Constraints Reference

Attribute Constraint
FATAL /
Nonfatal Compatibility Check

traceability and readability
of generated code.

4-20

5

Block Constraints Reference

• “About Block Constraints Reference” on page 5-2

• “Block Constraints — Alphabetical List” on page 5-5

• “Supported Blocks — By Category” on page 5-25

5 Block Constraints Reference

About Block Constraints Reference
Simulink Code Inspector supports a subset of Simulink blocks for code
inspection. For the supported blocks, some block-specific constraints on
data types and block parameters may apply. Additionally, a few constraints
apply to all supported blocks. Before code inspection, when you check the
compatibility of your model with code inspection rules, the compatibility
checker detects and reports any violations of block constraints.

“Block Constraints — Alphabetical List” on page 5-5 presents the supported
blocks in alphabetical order. For each supported block, a table provides:

• The block name, which links to the complete block description

• Data type constraints that apply to the block, if any

• Block parameter constraints that apply to the block, if any

A sample table is shown below. For each entry:

• The Constraint column lists the Simulink Code Inspector constraint on
block data types or a block parameter. For block parameters, the entry lists
the dialog box name of the parameter, with the command-line name of the
parameter in parentheses.

• The FATAL / Nonfatal column identifies whether violation of the
constraint terminates code inspection. You can also configure code
inspection so that any constraint violation (FATAL or Nonfatal) terminates
code inspection.

• The Compatibility Check column lists the compatibility check that
checks for violation of the constraint, and links to a description of the check.

5-2

About Block Constraints Reference

Saturation

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should all
have the same data type.

Nonfatal

Upper limit (UpperLimit) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,
be complex, have two or more
dimensions, or specify the range (:)
operator.

FATAL

Lower limit (LowerLimit) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,
be complex, have two or more
dimensions, or specify the range (:)
operator.

FATAL

The source of the upper limit value
must be block parameter Upper
limit rather than input ports
(UpperLimitSource must be set to
dialog).

Nonfatal

The source of the lower limit value
must be block parameter Lower
limit rather than input ports
(LowerLimitSource must be set to
dialog).

Nonfatal

Block
Parameters

Integer rounding mode
(RndMeth) must be set to Zero or
Floor.

Nonfatal

Check usage of
Discontinuities blocks >
Check Saturate blocks

“All Blocks” on page 5-6 lists constraints that apply to all supported blocks.

“Supported Blocks — By Category” on page 5-25 presents the supported
blocks by category and provides links to the block-specific constraints.

5-3

5 Block Constraints Reference

Note All blocks that are supported for code inspection are available in
the block library slcilib, which you can open by entering slcilib in the
MATLAB Command Window.

5-4

Block Constraints — Alphabetical List

Block Constraints — Alphabetical List

In this section...

“All Blocks” on page 5-6

“Abs” on page 5-7

“Bus Assignment” on page 5-8

“Bus Creator” on page 5-8

“Bus Selector” on page 5-9

“Constant” on page 5-9

“Data Store Memory” on page 5-10

“Data Store Read” on page 5-10

“Data Store Write” on page 5-11

“Data Type Conversion” on page 5-11

“Data Type Duplicate” on page 5-12

“Demux” on page 5-12

“From” on page 5-13

“Gain” on page 5-13

“Goto” on page 5-14

“Inport” on page 5-14

“Logical Operator” on page 5-14

“Math Function” on page 5-15

“MinMax” on page 5-16

“Model” on page 5-16

“Multiport Switch” on page 5-17

“Mux” on page 5-17

“Outport” on page 5-18

“Product” on page 5-18

“Relational Operator” on page 5-19

5-5

5 Block Constraints Reference

In this section...

“Saturation” on page 5-19

“Selector” on page 5-20

“S-Function” on page 5-20

“Signal Conversion” on page 5-21

“Subsystem” on page 5-22

“Sum, Add, Subtract” on page 5-22

“Switch” on page 5-23

“Terminator” on page 5-23

“Trigonometric Function” on page 5-24

“Unit Delay” on page 5-24

All Blocks

Constraints that apply to all blocks

Constraint
FATAL /
Nonfatal Compatibility Check

Input and output ports must be of
data types among the following:
double, single, int8, uint8,
int16, uint16, int32, uint32, or
boolean. If the block supports
buses, the ports can be buses for
which the elements (potentially
including other buses) meet the
data type constraint.

FATAL

Input and output ports must be
noncomplex. Complex values are
not supported for code inspection.

Nonfatal

Input and output ports must
be scalars or vectors (not
multidimensional).

Nonfatal

Data Types All block compatibility checks

5-6

Block Constraints — Alphabetical List

Constraints that apply to all blocks

Constraint
FATAL /
Nonfatal Compatibility Check

Input and output ports must not
use frame-based signals.

Nonfatal

Output signal storage class must
be set to Auto. Values other than
Auto require use of storage classes,
which are not supported for code
inspection.

Nonfatal

Output port must not be testpointed
when the block has constant (Inf)
sample time.

Nonfatal

Abs

Abs

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should all
have the same data type.

Nonfatal

Block
Parameters

Integer rounding mode
(RndMeth) must be set to Zero or
Floor.

Nonfatal

Check usage of Math
Operations blocks > Check
Absolute blocks

5-7

5 Block Constraints Reference

Bus Assignment

Bus Assignment

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

This block can only operate
on a virtual bus. This constraint
simplifies bus processing to promote
traceability and readability of
generated code.

FATAL

Block
Parameters

No block-specific constraints

Check usage of Signal
Routing blocks > Check Bus
Assignment blocks

Bus Creator

Bus Creator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Bus Creator
blocks

5-8

Block Constraints — Alphabetical List

Bus Selector

Bus Selector

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Bus Selector
blocks

Constant

Constant

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Constant value (Value) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,
be complex, have two or more
dimensions, or specify the range (:)
operator.

FATALBlock
Parameters

Interpret vector parameters
as 1-D (VectorParams1D) must be
selected (set to on).

Nonfatal

Check usage of Sources blocks
> Check Constant blocks

5-9

5 Block Constraints Reference

Data Store Memory

Data Store Memory

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

State must have storage class Auto.
Values other than Auto require use
of storage classes, which are not
supported for code inspection.

Nonfatal

Initial value (InitialValue)
must not: be empty, be nonfinite,
have a MATLAB structure as a
value, be complex, have two or
more dimensions, or specify the
range (:) operator.

FATAL

Signal type (SignalType) must
be set to auto or real. Complex
values are not supported for code
inspection.

Nonfatal

Block
Parameters

Interpret vector parameters
as 1-D (VectorParams1D) must be
selected (set to on).

Nonfatal

Check usage of Signal Routing
blocks > Check Data Store
Memory blocks

Data Store Read

Data Store Read

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

The block cannot specify elements.
Specify element(s) to select
(DataStoreElements) must be ''.

Nonfatal

Check usage of Signal Routing
blocks > Check Data Store
Read blocks

5-10

Block Constraints — Alphabetical List

Note Data Store Read and Data Store Write blocks cannot reference
externally-defined signal objects as global data stores. For more information,
see modelwide constraints.

Data Store Write

Data Store Write

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

The block cannot specify elements.
Specify element(s) to select
(DataStoreElements) must be ''.

Nonfatal

Check usage of Signal Routing
blocks > Check Data Store
Write blocks

Note Data Store Read and Data Store Write blocks cannot reference
externally-defined signal objects as global data stores. For more information,
see modelwide constraints.

Data Type Conversion

Data Type Conversion

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Input and output to have equal
(ConvertRealWorld) must be Real
World Value (RWV).

NonfatalBlock
Parameters

Check usage of Signal
Attributes blocks > Check
Data Type Conversion blocks

5-11

5 Block Constraints Reference

Data Type Conversion

Constraint
FATAL /
Nonfatal Compatibility Check

Integer rounding mode
(RndMeth) must be set to Zero or
Floor.

Nonfatal

Data Type Duplicate

Data Type Duplicate

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal
Attributes blocks > Check
Data Type Duplicate blocks

Demux

Demux

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Demux blocks

5-12

Block Constraints — Alphabetical List

From

From

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check From blocks

Gain

Gain

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should all
have the same data type.

Nonfatal

Gain (Gain) must not: be empty,
be nonfinite, have a MATLAB
structure as a value, be complex,
have two or more dimensions, or
specify the range (:) operator.

FATAL

Parameter data type
(ParamDataTypeStr) must use
the same data type as the Gain
block input.

Nonfatal

Multiplication
(Multiplication) must be set to
Element-wise(K.*u).

Nonfatal

Block
Parameters

Integer rounding mode
(RndMeth) must be set to Zero or
Floor.

Nonfatal

Check usage of Math
Operations blocks > Check
Gain blocks

5-13

5 Block Constraints Reference

Goto

Goto

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Goto blocks

Inport

Inport

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

The block cannot specify
variable-dimension signals.
Variable-size signal
(VarSizeSig) must not be set
to Yes.

Nonfatal

Check usage of Sources blocks
> Check Inport blocks

Logical Operator

Logical Operator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Output port must be of the data
type boolean.

FATAL

Data Types
and Ports

Check usage of Logical and
Bit Operations blocks > Check
Logic blocks

5-14

Block Constraints — Alphabetical List

Logical Operator

Constraint
FATAL /
Nonfatal Compatibility Check

Block must have at least two
inports, except in the case of the
NOT operator.

FATAL

Block
Parameters

No block-specific constraints

Math Function

Math Function

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types
and Ports Input and output ports should all

have the same data type.
Nonfatal

Function (Operator) must be set
to one of the following values: exp,
log, 10^u, log10, magnitude^2,
square, pow, reciprocal, hypot,
rem, mod, or (for legacy models)
sqrt. You cannot select conj,
transpose, or hermitian.

FATALBlock
Parameters

Integer rounding mode
(RndMeth) must be set to Zero or
Floor.

Nonfatal

Check usage of Math
Operations blocks > Check
Math blocks

5-15

5 Block Constraints Reference

MinMax

MinMax

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Input and output ports should all
have the same data type.

Nonfatal

Data Types

Block must have at least two
inports.

FATAL

Block
Parameters

Integer rounding mode
(RndMeth) must be set to Zero or
Floor.

Nonfatal

Check usage of Math
Operations blocks > Check
Minmax blocks

Model

Model

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

The block cannot have variants.
Enable variants (Variant) must
not be selected (must be set to off).

Nonfatal

Check usage of Ports and
Subsystems blocks > Check
Model Reference blocks

Note Referenced models cannot accept model arguments. For more
information, see modelwide constraints.

5-16

Block Constraints — Alphabetical List

Multiport Switch

Multiport Switch

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Control input port must have an
integer data type and data input
and output ports must all have the
same data type.

Nonfatal

Data Types
and Ports

Block must have at least three
inports.

FATAL

Data port order (DataPortOrder)
must be set to Zero-based
contiguous or One-based
contiguous (not Specify
indices).

NonfatalBlock
Parameters

Integer rounding mode
(RndMeth) must be set to Zero or
Floor.

Nonfatal

Check usage of Signal
Routing blocks > Check
Multiport Switch blocks

Mux

Mux

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Mux blocks

5-17

5 Block Constraints Reference

Outport

Outport

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

The block cannot specify
variable-dimension signals.
Variable-size signal
(VarSizeSig) must not be set
to Yes.

Nonfatal

Check usage of Sinks blocks >
Check Outport blocks

Product

Product

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should all
have the same data type.

Nonfatal

Number of inputs (inputs) must
be set to 2, **, /*, or */.

Nonfatal

Multiplication (Multiplication)
must be set to Element-wise(.*).

Nonfatal

Block
Parameters

Integer rounding mode
(RndMeth) must be set to Zero or
Floor.

Nonfatal

Check usage of Math
Operations blocks > Check
Product blocks

5-18

Block Constraints — Alphabetical List

Relational Operator

Relational Operator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Output port must be of the data
type boolean.

FATAL

Block
Parameters

Relational operator (Operator)
must be set to <=, ==, >=, ~=, <, or >
(not isInf, isNaN, or isFinite).

FATAL

Check usage of Logical and
Bit Operations blocks > Check
Relational Operator blocks

Saturation

Saturation

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should all
have the same data type.

Nonfatal

Upper limit (UpperLimit) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,
be complex, have two or more
dimensions, or specify the range (:)
operator.

FATAL

Lower limit (LowerLimit) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,
be complex, have two or more
dimensions, or specify the range (:)
operator.

FATAL

The source of the upper limit value
must be block parameter Upper

Nonfatal

Block
Parameters

Check usage of
Discontinuities blocks >
Check Saturate blocks

5-19

5 Block Constraints Reference

Saturation

Constraint
FATAL /
Nonfatal Compatibility Check

limit rather than input ports
(UpperLimitSource must be set to
dialog).

The source of the lower limit value
must be block parameter Lower
limit rather than input ports
(LowerLimitSource must be set to
dialog).

Nonfatal

Integer rounding mode
(RndMeth) must be set to Zero or
Floor.

Nonfatal

Selector

Selector

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

Must use one-dimensional inputs
and must specify indices using the
block dialog (not using port-based
indexing).

Nonfatal

Check usage of Signal
Routing blocks > Check
Selector blocks

S-Function

Note Simulink Code Inspector supports S-functions created using the
Legacy Code Tool.

5-20

Block Constraints — Alphabetical List

S-Function

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

All arguments must be scalars, or
vectors of fixed dimension.

Nonfatal

Block
Parameters

S-functions:
• Must be created using the Legacy
Code Tool.

• Can only specify an
OutputFcnSpec (not
InitializeConditionsFcnSpec,
StartFcnSpec, or
TerminateFcnSpec).

• Can not have more than one
dwork.

Nonfatal

Check usage of User-Defined
Function blocks > Check
S-Function blocks

Signal Conversion

Signal Conversion

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

Output (ConversionOutput) must
be set to Signal copy.

Nonfatal

Check usage of Signal
Attributes blocks > Check
Signal Conversion blocks

5-21

5 Block Constraints Reference

Subsystem

Subsystem

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Subsystems must be virtual.
Nonvirtual (atomic) subsystems are
not supported.

FATALBlock
Parameters

The block cannot have variants.
Variant (Variant) must be set to
off.

Nonfatal

Check usage of Ports and
Subsystems blocks > Check
Subsystem blocks

Sum, Add, Subtract

Sum

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Block must have two inports. FATAL

Data Types
and Ports

Input and output ports should all
have the same data type.

Nonfatal

Accumulator data type
(AccumDataTypeStr) must use
the same data type as the block
inputs.

NonfatalBlock
Parameters

Integer rounding mode
(RndMeth) must be set to Zero or
Floor.

Nonfatal

Check usage of Math
Operations blocks > Check
Sum blocks

5-22

Block Constraints — Alphabetical List

Switch

Switch

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

The first and third input ports and
the output port must have the same
data type.

Nonfatal

Block
Parameters

Integer rounding mode
(RndMeth) must be set to Zero or
Floor.

Nonfatal

Check usage of Signal Routing
blocks > Check Switch blocks

Terminator

Terminator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Sinks blocks >
Check Terminator blocks

5-23

5 Block Constraints Reference

Trigonometric Function

Trigonometric Function

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Function (Operator) must not
be set to cos + jsin (complex
exponential of the input).

NonfatalBlock
Parameters

Approximation method
(ApproximationMethod) must
be set to None.

Nonfatal

Check usage of Math
Operations blocks > Check
Trigonometry blocks

Unit Delay

Unit Delay

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

State must have storage class Auto.
Values other than Auto require use
of storage classes, which are not
supported for code inspection.

Nonfatal

Block
Parameters

Initial conditions (X0) must not:
be empty, be nonfinite, have a
MATLAB structure as a value,
be complex, have two or more
dimensions, or specify the range (:)
operator.

FATAL

Check usage of Discrete
blocks > Check Unit Delay
blocks

5-24

Supported Blocks — By Category

Supported Blocks — By Category

In this section...

“Commonly Used Blocks” on page 5-25

“Discontinuity Blocks” on page 5-26

“Discrete Blocks” on page 5-26

“Logic and Bit Operation Blocks” on page 5-26

“Math Operation Blocks” on page 5-26

“Port & Subsystem Blocks” on page 5-27

“Signal Attribute Blocks” on page 5-27

“Signal Routing Blocks” on page 5-27

“Sink Blocks” on page 5-28

“Source Blocks” on page 5-28

“User-Defined Functions” on page 5-28

Commonly Used Blocks

• “Bus Creator” on page 5-8

• “Bus Selector” on page 5-9

• “Constant” on page 5-9

• “Data Type Conversion” on page 5-11

• “Demux” on page 5-12

• “Gain” on page 5-13

• “Inport” on page 5-14

• “Logical Operator” on page 5-14

• “Mux” on page 5-17

• “Outport” on page 5-18

• “Product” on page 5-18

5-25

5 Block Constraints Reference

• “Relational Operator” on page 5-19

• “Saturation” on page 5-19

• “Subsystem” on page 5-22

• “Sum, Add, Subtract” on page 5-22

• “Switch” on page 5-23

• “Terminator” on page 5-23

• “Unit Delay” on page 5-24

Discontinuity Blocks

• “Saturation” on page 5-19

Discrete Blocks

• “Unit Delay” on page 5-24

Logic and Bit Operation Blocks

• “Logical Operator” on page 5-14

• “Relational Operator” on page 5-19

Math Operation Blocks

• “Abs” on page 5-7

• “Gain” on page 5-13

• “Math Function” on page 5-15

• “MinMax” on page 5-16

• “Product” on page 5-18

• “Sum, Add, Subtract” on page 5-22

• “Trigonometric Function” on page 5-24

5-26

Supported Blocks — By Category

Port & Subsystem Blocks

• “Inport” on page 5-14

• “Model” on page 5-16

• “Outport” on page 5-18

• “Subsystem” on page 5-22

Signal Attribute Blocks

• “Data Type Conversion” on page 5-11

• “Data Type Duplicate” on page 5-12

• “Signal Conversion” on page 5-21

Signal Routing Blocks

• “Bus Assignment” on page 5-8

• “Bus Creator” on page 5-8

• “Bus Selector” on page 5-9

• “Data Store Memory” on page 5-10

• “Data Store Read” on page 5-10

• “Data Store Write” on page 5-11

• “Demux” on page 5-12

• “From” on page 5-13

• “Goto” on page 5-14

• “Multiport Switch” on page 5-17

• “Mux” on page 5-17

• “Selector” on page 5-20

• “Switch” on page 5-23

5-27

5 Block Constraints Reference

Sink Blocks

• “Outport” on page 5-18

• “Terminator” on page 5-23

Source Blocks

• “Constant” on page 5-9

• “Inport” on page 5-14

User-Defined Functions

• “S-Function” on page 5-20

5-28

6

Model Advisor Checks

6 Model Advisor Checks

Simulink Code Inspector Checks

In this section...

“Simulink® Code Inspector Checks Overview” on page 6-4

“Check code generation settings” on page 6-5

“Check data import/export settings” on page 6-9

“Check diagnostic settings” on page 6-10

“Check hardware implementation settings” on page 6-12

“Check model reference settings” on page 6-14

“Check optimization settings” on page 6-15

“Check solver settings” on page 6-18

“Check for unconnected objects in the model” on page 6-19

“Check system target file setting” on page 6-20

“Check function specification setting” on page 6-21

“Check model arguments” on page 6-22

“Check for unsupported blocks” on page 6-23

“Check for tunable workspace variables” on page 6-24

“Check for sample times in the model” on page 6-25

“Check for usage of global data stores” on page 6-26

“Check usage of Sources blocks” on page 6-27

“Check usage of Signal Routing blocks” on page 6-30

“Check usage of Math Operations blocks” on page 6-42

“Check usage of Signal Attributes blocks” on page 6-49

“Check usage of Logical and Bit Operations blocks” on page 6-52

“Check usage of User-Defined Function blocks” on page 6-55

“Check usage of Ports and Subsystems blocks” on page 6-57

“Check usage of Discontinuities blocks” on page 6-60

“Check usage of Sinks blocks” on page 6-62

6-2

Simulink® Code Inspector™ Checks

In this section...

“Check usage of Discrete blocks” on page 6-64

“Check usage of root Outport blocks” on page 6-66

“Check usage of buses” on page 6-67

6-3

6 Model Advisor Checks

Simulink Code Inspector Checks Overview
Use Simulink Code Inspector Model Advisor checks to configure your model
for code inspection.

See Also

• “Consulting the Model Advisor”

• “Simulink Checks”

• “Embedded Coder™ Checks”

• “Simulink® Verification and Validation™ Checks”

6-4

Simulink® Code Inspector™ Checks

Check code generation settings
Check code generation settings in the model configuration that might impact
compatibility with Simulink Code Inspector.

Description
This check verifies that code generation settings are compatible with code
inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify
’Language’
setting

The model is configured to generate
C++ files rather than C files.

Go to Configuration Parameters
> Code Generation and set
Language to C.

Verify ’Source
file’ setting

Custom code is configured to appear
near the top of the generated model
source file.

Go to Configuration Parameters >
Code Generation > Custom Code
and clear the Source file field.

Verify
’Initialize
function’
setting

Custom code is configured to appear
in the generated model initialize
function.

Go to Configuration Parameters >
Code Generation > Custom Code
and clear the Initialize function
field.

Verify
’Terminate
function’
setting

Custom code is configured to appear
in the generated model terminate
function.

Go to Configuration Parameters >
Code Generation > Custom Code
and clear the Terminate function
field.

Verify ’Include
comments’
setting

The model is configured to omit
autogenerated comments from
generated code files. The Code
Inspector parses autogenerated
comments to obtain traceability
information about model data.

Go to Configuration Parameters >
Code Generation > Comments
and select Include comments.

6-5

6 Model Advisor Checks

Subcheck Condition Recommended Action

Verify
’Generate
scalar inlined
parameter as’
setting

The model is configured to generate
scalar inlined parameters as
variables with #define macros,
rather than as numeric constants.

Go to Configuration Parameters
> Code Generation > Symbols
and set Generate scalar inlined
parameter as to Literals.

Verify
’Preserve
condition
expression in
if statement’
setting

The model is configured to optimize
empty primary condition expressions
in if statements by negating them,
rather than preserving the empty
primary condition expressions.

Go to Configuration Parameters >
Code Generation > Code Style
and select Preserve condition
expression in if statement.

Verify ’Replace
data type
names in the
generated code’
setting

The model is configured to replace
built-in data type names with
user-defined data type names in
the generated code. Data type
replacement is not supported for code
inspection.

Go to Configuration Parameters
> Code Generation > Data
Type Replacement and clear the
Replace data type names in the
generated code option.

Verify ’Target
function
library’ setting

A code replacement library other
than C89/C90 (ANSI), the ANSI C
library supported for code inspection,
is selected for the model.

Go to Configuration Parameters
> Code Generation > Interface
and set Target function library
to C89/C90 (ANSI) (equivalent to
ANSI_C specified at the command
line).

Verify ’GRT
compatible
call interface’
setting

The model is configured to generate
model function calls compatible with
the main program module of the GRT
target. The GRT compatible call
interface is not supported for code
inspection.

Go to Configuration Parameters >
Code Generation > Interface and
clear the GRT compatible call
interface option.

Verify ’Single
output/update
function’
setting

The model is configured to generate
code in separate model_output and
model_update functions, rather than
a model_step function that combines
the two.

Go to Configuration Parameters
> Code Generation > Interface
and select Single output/update
function.

6-6

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Verify
’Terminate
function
required’
setting

The model is configured to generate
a model_terminate function,
potentially containing model
termination code to be executed
during system shutdown. This is not
supported for code inspection.

Go to Configuration Parameters
> Code Generation > Interface
and clear the Terminate function
required option.

Verify
’Generate
reusable code’
setting

The model is not configured to
generate reusable, multi-instance
code that is reentrant. This option is
applicable only to the top model in a
model hierarchy.

Go to Configuration Parameters >
Code Generation > Interface and
select Generate reusable code.

Verify
’MAT-file
logging’ setting

The model is configured to log
execution data to a MAT-file. This is
not supported for code inspection.

Go to Configuration Parameters >
Code Generation > Interface and
clear theMAT-file logging option.

Verify
’non-finite
numbers’
setting

The model is configured to generate
nonfinite data (for example, NaN and
Inf) and related operations. This is
not supported for code inspection.

Go to Configuration Parameters
> Code Generation > Interface
and clear the Support: non-finite
numbers option.

Verify ’absolute
time’ setting

The model is configured to generate
and maintain integer counters for
absolute and elapsed time values.
This is not supported for code
inspection.

Go to Configuration Parameters >
Code Generation > Interface and
clear the Support: absolute time
option.

Verify
’Suppress
error status in
real-timemodel
data structure’
setting

The model is configured to include
an error status field in a generated
rtModel data structure. The rtModel
data structure is not supported for
code inspection.

Go to Configuration Parameters >
Code Generation > Interface and
select Suppress error status in
real-time model data structure.

Verify
’IncludeERT-
FirstTime’
setting

The model is configured to include
the firstTime argument in the
generated model_initialize
function. This is not supported for
code inspection.

In the MATLAB Command
Window, set the model parameter
IncludeERTFirstTime to off.
For example, set_param(gcs,
'IncludeERTFirstTime', 'off').

6-7

6 Model Advisor Checks

Subcheck Condition Recommended Action

Verify ’Pass
root-level I/O
as’ setting

The model is configured to use packed
structures, rather than individual
arguments, to pass root-level model
input and output values to the
model_step function. This is not
supported for code inspection. This
parameter is applicable only to the
top model in a model hierarchy.

Go to Configuration Parameters
> Code Generation > Interface
and set Pass root-level I/O as to
Individual arguments.

Verify ’Create
block’ setting

The model is configured to generate
a SIL or PIL block during code
generation. This is not supported for
code inspection.

Go to Configuration Parameters >
Code Generation > SIL and PIL
Verification and set Create block
to None.

Verify
’Instrument
generated
code for
execution time
measurement’
setting

The model is configured to generate
code with instrumentation to collect
execution times for functions inside
the generated code. This is not
supported for code inspection.

Go to Configuration Parameters >
Code Generation > SIL and PIL
Verification and clear theMeasure
function execution times option.

Verify Code
Generation
> Interface
> Interface
setting

The model is configured to generate
code for C API, external mode, or
ASAP2 data interfaces. This is not
supported for code inspection.

Go to Configuration Parameters >
Code Generation > Interface and
set Interface to None.

See Also
“Model Configuration Constraints” on page 4-4

6-8

Simulink® Code Inspector™ Checks

Check data import/export settings
Check data import/export settings in the model configuration that might
impact compatibility with Simulink Code Inspector.

Description
This check verifies that data import/export settings are compatible with
code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify ’Input’
setting

The model is configured to load
data from a workspace, which is not
compatible with code inspection.

Go to Configuration Parameters >
Data Import/Export and clear the
Input option.

Verify ’Initial
state’ setting

The model is configured to load initial
states from a workspace, which is not
compatible with code inspection.

Go to Configuration Parameters >
Data Import/Export and clear the
Initial state option.

See Also
“Model Configuration Constraints” on page 4-4

6-9

6 Model Advisor Checks

Check diagnostic settings
Check diagnostic settings in the model configuration that might impact
compatibility with Simulink Code Inspector.

Description
This check verifies that diagnostic settings are compatible with code
inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify
’Invalid root
Inport/Outport
block
connection’
setting

The model is not configured to
generate an error if Simulink
software detects invalid internal
connections to the root-level Inport
or Outport blocks. This potentially
allows automatic insertion of hidden
signal copy blocks at the model
inports and outports, which is not
supported for code inspection.

Go to Configuration Parameters
> Diagnostics > Model
Referencing and set Invalid
root Inport/Outport block
connection to error. If an error is
generated, it identifies the locations
at which you can manually insert
Signal Conversion blocks to avoid the
error and maintain traceability.

Verify
’Underspecified
initialization
detection’
setting

The model is not configured to
initialize block initial conditions
using simplified behavior. The
simplified behavior can improve the
consistency of model results.

Go to Configuration Parameters >
Diagnostics > Data Validity and
set Underspecified initialization
detection to Simplified.

Verify ’Non-bus
signals treated
as bus signals’
setting

The model is not configured to
generate an error when Simulink
software implicitly converts a
non-bus signal to a bus signal to
support connecting the signal to a
Bus Assignment or Bus Selector
block.

Go to Configuration Parameters >
Diagnostics > Connectivity and
set Non-bus signals treated as
bus signals to error.

Verify ’Detect
downcast’
setting

The model is not configured to
generate an error when a parameter
downcast occurs during simulation.

Go to Configuration Parameters >
Diagnostics > Data Validity and
set Detect downcast to error.

6-10

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Verify ’Detect
overflow’
setting

The model is not configured to
generate an error when a parameter
overflow occurs during simulation.

Go to Configuration Parameters >
Diagnostics > Data Validity and
set Detect overflow to error.

Verify ’Detect
underflow’
setting

The model is not configured to
generate an error when a parameter
underflow occurs during simulation.

Go to Configuration Parameters >
Diagnostics > Data Validity and
set Detect underflow to error.

Verify ’Detect
precision loss’
setting

The model is not configured to
generate an error when parameter
precision loss occurs during
simulation.

Go to Configuration Parameters >
Diagnostics > Data Validity and
set Detect precision loss to error.

Verify ’Detect
loss of
tunability’
setting

The model is not configured
to generate an error when an
expression with tunable variables is
reduced to its numerical equivalent.

Go to Configuration Parameters >
Diagnostics > Data Validity and
set Detect loss of tunability to
error.

Verify Bus
signal treated
as vector
setting

The model is not configured to
generate an error when Simulink
software detects a virtual bus signal
that is used as a mux signal. Strict
bus behavior is not enforced.

Go to Configuration Parameters >
Diagnostics > Connectivity and
set Bus signal treated as vector
to error.

See Also
“Model Configuration Constraints” on page 4-4

6-11

6 Model Advisor Checks

Check hardware implementation settings
Check hardware implementation settings in the model configuration that
might impact compatibility with Simulink Code Inspector.

Description
This check verifies that hardware implementation settings are compatible
with code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify ’char’
setting

The bit length of character data for
the production hardware does not
equal 8.

Verify ’short’
setting

The bit length of short data for the
production hardware does not equal
16.

Verify ’int’
setting

The bit length of int data for the
production hardware does not equal
32.

Verify ’long’
setting

The bit length of long data for the
production hardware does not equal
32.

Verify ’float’
setting

The bit length of floating-point data
for the production hardware does not
equal 32.

Verify ’double’
setting

The bit length of double data for the
production hardware does not equal
64.

Verify ’pointer’
setting

The bit length of pointer data for the
production hardware does not equal
32.

Go to Configuration Parameters >
Hardware Implementation and
select a production hardware Device
type that is compatible with the
settings in this table.

6-12

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Verify ’native’
setting

The microprocessor native word size
for the production hardware does not
equal 32 bits.

Verify ’Signed
integer
division rounds
to’ setting

The method of producing a signed
integer quotient for the production
hardware is not to choose the integer
that is closer to zero (Zero method).

Verify ’Shift
right on a
signed integer
as arithmetic
shift’ setting

The method by which the compiler
implements signed integer right shift
for the production hardware is not an
arithmetic right shift.

Verify ’None’
setting

The test hardware differs from the
deployment hardware.

Go to Configuration Parameters >
Hardware Implementation and,
under Emulation hardware (code
generation only), select None.

See Also
“Model Configuration Constraints” on page 4-4

6-13

6 Model Advisor Checks

Check model reference settings
Check model reference settings in the model configuration that might impact
compatibility with Simulink Code Inspector.

Description
This check verifies that model reference settings are compatible with code
inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify ’Total
number of
instances
allowed per top
model’ setting

The model is configured such that
it can be referenced at most once in
a model reference hierarchy (versus
multiple or zero times). This might
cause the model interface to fail
validation.

Go to Configuration Parameters >
Model Referencing and set Total
number of instances allowed per
top model to Multiple or Zero.

See Also
“Model Configuration Constraints” on page 4-4

6-14

Simulink® Code Inspector™ Checks

Check optimization settings
Check optimization settings in the model configuration that might impact
compatibility with Simulink Code Inspector.

Description
This check verifies that optimization settings are compatible with code
inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify
’AdvancedOptControl’
setting

The model is not configured to disable
optimizations that are incompatible
with Simulink Code Inspector.

In the MATLAB Command
Window, set the model parameter
AdvancedOptControl to -SLCI.
For example, set_param(gcs,
'AdvancedOptControl', '-SLCI').

Verify
’Implement
logic signals as
Boolean data
(vs. double)’
setting

The model is configured to implement
logic signals with the double data
type, rather than with the more
memory-efficient boolean data type.

Go to Configuration Parameters
> Optimization and select
Implement logic signals as
Boolean data (vs. double).

Verify ’Inline
parameters’
setting

The model is configured to use
symbolic names (instead of inline
numerical values) for tunable model
parameters in generated code.

Go to Configuration Parameters
> Optimization > Signals and
Parameters and select Inline
parameters.

Verify ’Use
memcpy
for vector
assignment’
setting

The model is configured to optimize
code generated for vector assignment
by conditionally replacing for loops
with memcpy, based on a threshold
parameter.

Go to Configuration Parameters
> Optimization > Signals and
Parameters and clear the Use
memcpy for vector assignment
option.

6-15

6 Model Advisor Checks

Subcheck Condition Recommended Action

Verify
’Optimize
initialization
code for model
reference’
setting

The model is configured to generate
initialization code for all blocks that
have states, without an optimization
that can produce more efficient code
for referenced models.

Go to Configuration Parameters >
Optimization and select Optimize
initialization code for model
reference.

Verify ’Inline
invariant
signals’ setting

The model is configured to use
symbolic names (instead of inline
numerical values) for invariant
signals in generated code.

Go to Configuration Parameters
> Optimization > Signals and
Parameters and select Inline
invariant signals.

Verify ’Use
memset to
initialize floats
and doubles to
0.0’ setting

The model is configured to generate
code that uses memset to initialize
floating-point data to 0.0.

Go to Configuration Parameters >
Optimization and clear the Use
memset to initialize floats and
doubles to 0.0 option. (This is
equivalent to InitFltsAndDblsTo-
Zero being set to on, not off, at the
command-line.)

Verify ’Remove
code from
floating-point
to integer
conversions
that wraps
out-of-range
values’ setting

The model is configured not to
remove wrapping code that handles
out-of-range floating-point to integer
conversion results when out-of-range
conversions occur.

Go to Configuration Parameters >
Optimization and select Remove
code from floating-point to
integer conversions that wraps
out-of-range values.

Verify ’Remove
code from
floating-point
to integer
conversions
with saturation
that maps NaN
to zero’ setting

The model is configured to remove
code that handles floating-point to
integer conversion results for NaN
values when mapping from NaN to
integer zero occurs.

Go to Configuration Parameters
> Optimization and clear the
Remove code from floating-point
to integer conversions with
saturation that maps NaN to zero
option.

6-16

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Verify ’Simplify
array indexing’
setting

The model is configured to generate
code that replaces multiply
operations with add operations in
array indices when accessing arrays
in a loop.

Go to Configuration Parameters
> Optimization > Signals and
Parameters and clear the Simplify
array indexing option.

Verify ’Remove
root level
I/O zero
initialization’
setting

The model is configured to generate
initialization code for all root-level
inports and outports, without an
optimization that can produce more
efficient code for root-level inports
and outports set to zero.

Go to Configuration Parameters >
Optimization and select Remove
root level I/O zero initialization.
(This is equivalent to setting
ZeroExternalMemoryAtStartup to
off, not on, at the command-line.)

Verify ’Remove
internal
data zero
initialization’
setting

The model is configured to generate
code that initializes internal work
structures to zero.

Go to Configuration Parameters >
Optimization and select Remove
internal data zero initialization.
(This is equivalent to setting
ZeroInternalMemoryAtStartup to
off, not on, at the command-line.)

See Also
“Model Configuration Constraints” on page 4-4

6-17

6 Model Advisor Checks

Check solver settings
Check solver settings in the model configuration that might impact
compatibility with Simulink Code Inspector.

Description
This check verifies that solver settings are compatible with code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify ’Type’
setting

The model is configured with a
variable-step solver.

Go to Configuration Parameters >
Solver and set Type to Fixed-step.

Verify ’Solver’
setting

The model is configured with a solver
other than a fixed-step discrete
solver.

Go to Configuration Parameters
> Solver and set Solver to
discrete (no continuous states)
(equivalent to FixedStepDiscrete
specified at the command line).

See Also
“Model Configuration Constraints” on page 4-4

6-18

Simulink® Code Inspector™ Checks

Check for unconnected objects in the model
Check for unconnected ports and lines in the model.

Description
This check reports any unconnected lines, input ports, and output ports in the
model or subsystem.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check for
unconnected
objects

One or more lines, input ports,
or output ports are not properly
connected in the model or subsystem.
This can result in dead code or hidden
ground blocks.

Connect or remove the affected
blocks.

See Also
“Model Configuration Constraints” on page 4-4

6-19

6 Model Advisor Checks

Check system target file setting
Check whether a compatible system target file is selected for the model.

Description
This check verifies that the System target file selected for the model is
ert.tlc or is derived from ert.tlc.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify system
target file
setting

The system target file selected for
the model is not ert.tlc or an
ERT-derived target.

Go to Configuration Parameters
> Code Generation and set
System target file to ert.tlc or an
ERT-derived target.

See Also
“Model Configuration Constraints” on page 4-4

6-20

Simulink® Code Inspector™ Checks

Check function specification setting
Check for function specification settings that might impact compatibility
with Simulink Code Inspector.

Description
This check verifies that function prototype control settings are compatible
with code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check model
interface
settings

The model specifies custom function
prototypes for model entry functions.
This is not supported for code
inspection.

Go to Configuration Parameters >
Code Generation > Interface, click
Configure Model Functions to
open the Model Interface dialog box,
and set Function specification to
Default model initialize and
step functions.

See Also
“Model Configuration Constraints” on page 4-4

6-21

6 Model Advisor Checks

Check model arguments
Check that the model does not have parameter arguments.

Description
This check verifies that no model arguments are defined for this model.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check model
arguments

Model arguments are specified
for referencing this model. Model
arguments are not supported for code
inspection.

Remove the model arguments.
Open Model Explorer, go to the
Model Hierarchy pane, select the
Model Workspace of the model,
and in the Model arguments (for
referencing this model) field,
remove the specified arguments.

See Also
“Model Configuration Constraints” on page 4-4

6-22

Simulink® Code Inspector™ Checks

Check for unsupported blocks
Check for blocks that are not supported by Simulink Code Inspector.

Description
This check updates the model diagram and reports any blocks that are not
supported by Simulink Code Inspector.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check for
blocks not
supported by
Simulink Code
Inspector

One or more blocks in the model are
not supported for code inspection.

Note Supported blocks are listed in
“Supported Blocks — By Category”
on page 5-25, and also can be viewed
in the slcilib block library.

Possible actions include:

• Replace an unsupported block
with a supported block.

• Replace an unsupported block
with an equivalent combination of
supported blocks.

• Replace an unsupported block
with an S-Function block created
using the Legacy Code Tool.

• If one or more unsupported blocks
cannot be removed, use referenced
models to isolate the unsupported
block(s), and/or use a partial
verification work flow that omits
the unsupported block(s).

See Also
Chapter 5, “Block Constraints Reference”

6-23

6 Model Advisor Checks

Check for tunable workspace variables
Check for tunable workspace variables referenced by the model.

Description
This check updates the model diagram and reports any tunable workspace
variables referenced by the model.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check for
tunable
workspace
variables
referenced by
the model

One or more workspace variables
referenced by the model are tunable.
This requires use of storage classes,
which are not supported for code
inspection.

Modify workspace variables or modify
the model so that the model no longer
references tunable workspace
variables.

See Also
“Model Configuration Constraints” on page 4-4

6-24

Simulink® Code Inspector™ Checks

Check for sample times in the model
Check for sample time characteristics that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports any instances of multiple,
variable, continuous, or asynchronous sample times.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check sample
times

The model is using multiple, variable,
continuous, or asynchronous sample
times. This is not supported for code
inspection.

Modify the model such that
multiple, variable, continuous, or
asynchronous sample times are not
being used.

See Also
“Model Configuration Constraints” on page 4-4

6-25

6 Model Advisor Checks

Check for usage of global data stores
Check for usage of global data store memory that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports any externally-defined
signal objects that are referenced as global data stores by Data Store Read
or Data Store Write blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify global
data store
usage

An externally-defined signal object is
referenced as a global data store by a
Data Store Read or Data Store Write
block. This might trigger creation of
a hidden Data Store Memory block at
the root level of the model, which is
not supported for code inspection.

Possible actions include:

• If possible, avoid use of externally
defined signal objects that are
referenced as global data stores
by Data Store Read or Data Store
Write blocks.

• Move the affected Data Store Read
or Data Store Write blocks into
Model blocks.

See Also
“Model Configuration Constraints” on page 4-4

6-26

Simulink® Code Inspector™ Checks

Check usage of Sources blocks
Check for usage of Sources blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports any incompatibilities it
finds in Sources blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The block cannot specify
variable-dimension signals. Block
parameter Variable-size signal
(VarSizeSig) is set to Yes.

Set Variable-size signal to No.Check Inport
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

Correct the listed block inport or
outport.

6-27

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Block parameter Constant value
(Value) is empty, is nonfinite, has
a MATLAB structure as a value, is
complex, has two or more dimensions,
or specifies the range (:) operator.

Correct the Constant value setting.

Block option Interpret
vector parameters as 1-D
(VectorParams1D) is cleared (set to
off).

Select Interpret vector
parameters as 1-D.

Check
Constant
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

6-28

Simulink® Code Inspector™ Checks

See Also
Chapter 5, “Block Constraints Reference”

6-29

6 Model Advisor Checks

Check usage of Signal Routing blocks
Check for usage of Signal Routing blocks that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports any incompatibilities it
finds in Signal Routing blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check Bus
Creator blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

Correct the listed block inport or
outport.

6-30

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Check Bus
Selector blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

6-31

6 Model Advisor Checks

Subcheck Condition Recommended Action

The block is operating on a nonvirtual
bus.

Modify the model such that the
block operates on a virtual bus. This
action simplifies bus processing to
promote traceability and readability
of generated code.

Check Bus
Assignment
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

6-32

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

The block state does not have storage
class Auto. Values other than Auto
require use of storage classes, which
are not supported for code inspection.

Modify the block such that its code
generation storage class is set to
Auto. If the block state name does not
resolve to a signal object, set Storage
Class in the State Attributes tab
of the block parameter dialog box to
Auto. If the block state name does
resolve to a signal object, set the
RTWInfo.StorageClass property of
the signal object to Auto.

Block parameter Initial value
(InitialValue) is empty, is
nonfinite, has a MATLAB structure
as a value, is complex, has two or
more dimensions, or specifies the
range (:) operator.

Correct the Initial value setting.

Block parameter Signal type
(SignalType) is set to complex.
Complex values are not supported for
code inspection.

Set Signal type to auto or real.

Block option Interpret
vector parameters as 1-D
(VectorParams1D) is cleared (set to
off).

Select Interpret vector
parameters as 1-D.

Check Data
Store Memory
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

Correct the listed block inport or
outport.

6-33

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

The block cannot specify
elements. Block parameter
Specify element(s) to select
(DataStoreElements) is set to a
nonempty string.

Clear element selections from the
Element Selection tab of the block
dialog box.

Check Data
Store Read
blocks

Note Data
Store Read and
Data Store
Write blocks
cannot reference
externally-defined
signal objects
as global data
stores. For more
information, see
“Check for usage
of global data
stores” on page
6-26.

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

Correct the listed block inport or
outport.

6-34

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

The block cannot specify
elements. Block parameter
Specify element(s) to select
(DataStoreElements) is set to a
nonempty string.

Clear element selections from the
Element Selection tab of the block
dialog box.

Check Data
Store Write
blocks

Note Data
Store Read and
Data Store
Write blocks
cannot reference
externally-defined
signal objects
as global data
stores. For more
information, see
“Check for usage
of global data
stores” on page
6-26.

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

6-35

6 Model Advisor Checks

Subcheck Condition Recommended Action

Check From
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

Check Goto
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

Correct the listed block inport or
outport.

6-36

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

The first and third input ports and
the output port do not have the same
data type.

Modify the data ports to have the
same data type. Consider selecting
the block option Require all data
port inputs to have the same data
type.

Block parameter Integer rounding
mode (RndMeth) is set to Single.

Set Integer rounding mode to
Zero or Floor.

Check Switch
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

Correct the listed block inport or
outport.

6-37

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Data input and output ports do not
all have the same data type.

Modify the data ports to have the
same data type. Consider selecting
the block option Require all data
port inputs to have the same data
type.

Multiport Switch blocks must have
at least three inports.

Reconfigure the block to have at least
three inports.

Block parameter Data port order
(DataPortOrder) is set to Specify
indices.

Set Data port order to Zero-based
contiguous or One-based
contiguous.

Block parameter Integer rounding
mode (RndMeth) is set to Single.

Set Integer rounding mode to
Zero or Floor.

Check
Multiport
Switch blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

Correct the listed block inport or
outport.

6-38

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Check Mux
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

6-39

6 Model Advisor Checks

Subcheck Condition Recommended Action

Check Demux
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

Uses multidimensional input, or
uses port-based indexing instead of
specifying indices using the block
dialog.

Configure the block to use
one-dimensional inputs, and
specify indices using the block dialog.
Set block parameter Index Option
to Select all, Index vector
(dialog), or Starting index
(dialog).

Check Selector
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,

Correct the listed block inport or
outport.

6-40

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

See Also
Chapter 5, “Block Constraints Reference”

6-41

6 Model Advisor Checks

Check usage of Math Operations blocks
Check for usage of Math Operations blocks that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports any incompatibilities
it finds in Math Operations blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Input and output ports do not all
have the same data type.

Modify the port data types to match.

Block parameter Integer rounding
mode (RndMeth) is set to Single.

Set Integer rounding mode to
Zero or Floor.

Check Absolute
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

Correct the listed block inport or
outport.

6-42

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Input and output ports do not all
have the same data type.

Modify the port data types to match.

Block parameter Gain (Gain) is
empty, is nonfinite, has a MATLAB
structure as a value, is complex, has
two or more dimensions, or specifies
the range (:) operator.

Correct the Gain setting.

Block parameter Parameter data
type (ParamDataTypeStr) does not
use the same data type as the Gain
block input.

Modify the Gain block to use the same
data type for its input and parameter.
Consider setting Parameter data
type to Inherit: Same as input.

Block parameter Multiplication
(Multiplication) is not set to
Element-wise(K.*u).

Set Multiplication to
Element-wise(K.*u).

Block parameter Integer rounding
mode (RndMeth) is set to Single.

Set Integer rounding mode to
Zero or Floor.

Check Gain
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

Correct the listed block inport or
outport.

6-43

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Input and output ports do not all
have the same data type.

Modify the port data types to match.

Function (Operator) is set to an
unsupported value: conj, transpose,
or hermitian.

Set Function to one of the
following values: exp, log, 10^u,
log10, magnitude^2, square, pow,
reciprocal, hypot, rem, mod, or (for
legacy models) sqrt.

Block parameter Integer rounding
mode (RndMeth) is set to Single.

Set Integer rounding mode to
Zero or Floor.

Check Math
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

Correct the listed block inport or
outport.

6-44

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Input and output ports do not all
have the same data type.

Modify the port data types to match.

Block parameter Number of inputs
(inputs) is not set to 2, **, /*, or */.

Set Number of inputs to 2, **, /*,
or */.

Block parameter Multiplication
(Multiplication) is not set to
Element-wise(.*).

Set Multiplication to
Element-wise(.*).

Block parameter Integer rounding
mode (RndMeth) is set to Single.

Set Integer rounding mode to
Zero or Floor.

Check Product
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

Correct the listed block inport or
outport.

6-45

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Sum, Add, or Subtract blocks must
have at least two inports.

Reconfigure the block to have at least
two inports.

Input and output ports do not all
have the same data type.

Modify the port data types to match.

Block parameter Accumulator data
type (AccumDataTypeStr) does not
use the same data type as the block
inputs.

Modify the block to use the same data
type for its inputs and accumulator.
Consider setting Accumulator data
type to Inherit: Same as first
input.

Block parameter Integer rounding
mode (RndMeth) is set to Single.

Set Integer rounding mode to
Zero or Floor.

Check Sum
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

Correct the listed block inport or
outport.

6-46

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Block parameter Function
(Operator) is set to cos + jsin
(complex exponential of the input).

Set Function to any value other
than cos + jsin.

Block parameter Approximation
method (ApproximationMethod) is
not set to None.

Set Approximation method to
None.

Check
Trigonometry
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

6-47

6 Model Advisor Checks

Subcheck Condition Recommended Action

Input and output ports do not all
have the same data type.

Modify the port data types to match.

MinMax blocks must have at least
two inports.

Reconfigure the block to have at least
two inports.

Block parameter Integer rounding
mode (RndMeth) is set to Single.

Set Integer rounding mode to
Zero or Floor.

Check Minmax
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

See Also
Chapter 5, “Block Constraints Reference”

6-48

Simulink® Code Inspector™ Checks

Check usage of Signal Attributes blocks
Check for usage of Signal Attributes blocks that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports any incompatibilities
it finds in Signal Attributes blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Block parameter Input and output
to have equal (ConvertRealWorld)
is not set to Real World Value
(RWV).

Set Input and output to have
equal to Real World Value (RWV).

Block parameter Integer rounding
mode (RndMeth) is set to Single.

Set Integer rounding mode to
Zero or Floor.

Check
Data Type
Conversion
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

Correct the listed block inport or
outport.

6-49

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Check Data
Type Duplicate
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

6-50

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Block parameter Output
(ConversionOutput) is not set
to Signal copy.

Set Output to Signal copy.Check Signal
Conversion
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

See Also
Chapter 5, “Block Constraints Reference”

6-51

6 Model Advisor Checks

Check usage of Logical and Bit Operations blocks
Check for usage of Logical and Bit Operations blocks that might impact
compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and reports any incompatibilities it
finds in Logical and Bit Operations blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Relational Operator block outport is
not Boolean.

Modify the data type of the outport
to boolean.

Block parameter Relational
operator (Operator) is set to an
unsupported value: isInf, isNaN, or
isFinite.

Set Relational operator to a
supported value: <=, ==, >=, ~=, <, or
>.

Check
Relational
Operator
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

Correct the listed block inport or
outport.

6-52

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Logical Operator block outport is not
Boolean.

Modify the data type of the outport
to boolean.

Logical Operator blocks must have at
least two inports, except in the case
of the NOT operator.

Reconfigure the block to have at least
two inports.

Check Logic
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

6-53

6 Model Advisor Checks

See Also
Chapter 5, “Block Constraints Reference”

6-54

Simulink® Code Inspector™ Checks

Check usage of User-Defined Function blocks
Check for usage of User-Defined Function blocks that might impact
compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and reports any incompatibilities it
finds in User-Defined Function blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The S-function was not created using
the Legacy Code Tool.

If possible, create the S-function
using the Legacy Code Tool, or
explore alternatives for including the
code in the model.

An S-function argument is neither a
scalar nor a vector of fixed dimension.

Modify the S-function such that all
arguments are scalars or vectors of
fixed dimension.

The Legacy Code Tool
S-function specifies a
InitializeConditionsFcnSpec,
StartFcnSpec, or
TerminateFcnSpec, rather than
an OutputFcnSpec.

Modify the S-function configuration
to specify an OutputFcnSpec.

The S-function has more than one
dwork.

Modify the S-function configuration
to specify one dwork.

Check
S-Function
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including

Correct the listed block inport or
outport.

6-55

6 Model Advisor Checks

Subcheck Condition Recommended Action

other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

See Also
Chapter 5, “Block Constraints Reference”

6-56

Simulink® Code Inspector™ Checks

Check usage of Ports and Subsystems blocks
Check for usage of Ports and Subsystems blocks that might impact
compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and reports any incompatibilities it
finds in Ports and Subsystems blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The Model block cannot have
variants. Block option Enable
variants (Variant) is selected (set
to on).

Clear the Enable variants option.Check Model
Reference
blocks

Note Referenced
models cannot
accept model
arguments.
For more
information, see
“Check model
arguments” on
page 6-22.

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

Correct the listed block inport or
outport.

6-57

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport has been
testpointed.

The subsystem is a nonvirtual
(atomic) subsystem.

If possible, reconfigure the subsystem
to be virtual (clear the Subsystem
block option Treat as atomic unit).
Alternatively, wrap the subsystem
in a Model block, or explore other
implementation options.

The block cannot have variants.
Block parameter Variant (Variant)
is not set to off.

Set Variant to off.

Check
Subsystem
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

6-58

Simulink® Code Inspector™ Checks

See Also
Chapter 5, “Block Constraints Reference”

6-59

6 Model Advisor Checks

Check usage of Discontinuities blocks
Check for usage of Discontinuities blocks that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports any incompatibilities it
finds in Discontinuities blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Input and output ports do not all
have the same data type.

Modify the port data types to match.

Block parameter Upper limit
(UpperLimit) is empty, is nonfinite,
has a MATLAB structure as a
value, is complex, has two or more
dimensions, or specifies the range (:)
operator.

Correct the Upper limit setting.

Block parameter Lower limit
(LowerLimit) is empty, is nonfinite,
has a MATLAB structure as a
value, is complex, has two or more
dimensions, or specifies the range (:)
operator.

Correct the Lower limit setting.

Block parameter UpperLimitSource
is not set to dialog.

Use the block parameter Upper
limit rather than input ports to
specify the upper limit.

Block parameter LowerLimitSource
is not set to dialog.

Use the block parameter Lower
limit rather than input ports to
specify the lower limit.

Block parameter Integer rounding
mode (RndMeth) is set to Single.

Set Integer rounding mode to
Zero or Floor.

Check Saturate
blocks

6-60

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

See Also
Chapter 5, “Block Constraints Reference”

6-61

6 Model Advisor Checks

Check usage of Sinks blocks
Check for usage of Sinks blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports any incompatibilities it
finds in Sinks blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The block cannot specify
variable-dimension signals. Block
parameter Variable-size signal
(VarSizeSig) is set to Yes.

Set Variable-size signal to No.Check Outport
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

Correct the listed block inport or
outport.

6-62

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Check
Terminator
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Correct the listed block inport or
outport.

See Also
Chapter 5, “Block Constraints Reference”

6-63

6 Model Advisor Checks

Check usage of Discrete blocks
Check for usage of Discrete blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports any incompatibilities it
finds in Discrete blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The block state does not have storage
class Auto. Values other than Auto
require use of storage classes, which
are not supported for code inspection.

Modify the block such that its code
generation storage class is set to
Auto. If the block state name does not
resolve to a signal object, set Storage
Class in the State Attributes tab
of the block parameter dialog box to
Auto. If the block state name does
resolve to a signal object, set the
RTWInfo.StorageClass property of
the signal object to Auto.

Block parameter Initial conditions
(X0) is empty, is nonfinite, has a
MATLAB structure as a value, is
complex, has two or more dimensions,
or specifies the range (:) operator.

Correct the Initial conditions
setting.

Check Unit
Delay blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32,
uint32, or boolean, or if the block
supports buses, a bus for which
the elements (potentially including
other buses) meet the data type
constraint.

Correct the listed block inport or
outport.

6-64

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block inport or outport is complex.

• Block inport or outport is
multidimensional (not a scalar or
a vector).

• Block inport or outport uses
frame-based signals.

• Block output signal storage class
is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

See Also
Chapter 5, “Block Constraints Reference”

6-65

6 Model Advisor Checks

Check usage of root Outport blocks
Check for usage of root Outport blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports any root Outport block
usage incompatibilities.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify sample
times

One or more root Outport blocks
specify a constant (Inf) sample time.
This will cause the model functions
to fail validation, because the root
outport assignment is moved to the
model initialize function.

Set the sample times of the
root Outport blocks to explicit,
nonconstant sample times.

Verify root
Outports pass
buses to parent
models as
structures

One or more root Outport blocks pass
a bus to the parent model without
passing the bus as a structure. This
might cause Simulink software to
insert a hidden Signal Conversion
block in the parent model, which is
not supported for code inspection.

For each instance, open the
Outport block dialog box and
select the option Output as
nonvirtual bus in parent model
(BusOutputAsStruct).

See Also
“Model Configuration Constraints” on page 4-4

6-66

Simulink® Code Inspector™ Checks

Check usage of buses
Check for usage of buses that might impact compatibility with Simulink
Code Inspector.

Description
This check updates the model diagram and reports any bus usage
incompatibilities.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check for
automatic
conversion
between
virtual to
non-virtual
buses

Simulink software performed an
automatic conversion from a virtual
to a nonvirtual bus at the interface
of one or more listed blocks. This
creates a hidden Signal Conversion
block, which is not supported for code
inspection.

Modify the model to use nonvirtual
buses at the interfaces of the listed
blocks.

Verify that
no blocks in
the model
perform an
unsupported
operation on a
bus

In the model, a nonvirtual block
operates on a virtual bus, or a Unit
Delay block operates on a virtual or
nonvirtual bus.

Modify the model so that no
nonvirtual block operates on a virtual
bus, and no Unit Delay block operates
on a bus. This action simplifies bus
processing to promote traceability
and readability of generated code.

See Also
“Model Configuration Constraints” on page 4-4

6-67

6 Model Advisor Checks

6-68

7

Simulink Code Inspector
Dialog Box Parameters

7 Simulink® Code Inspector™ Dialog Box Parameters

Simulink Code Inspector Dialog Box
The Simulink Code Inspector dialog box with parameters at their initial
default settings appears as follows.

7-2

Simulink Code Inspector Dialog Box

In this section...

“Simulink Code Inspector Dialog Box Overview” on page 7-4

“This is the top of the model hierarchy” on page 7-5

“Inspect all referenced models” on page 7-6

“Omit model from code inspection if it fails compatibility check” on page 7-7

“Generate code before code inspection” on page 7-8

“Code placement” on page 7-9

“Code folder” on page 7-10

“Report folder” on page 7-11

7-3

7 Simulink® Code Inspector™ Dialog Box Parameters

Simulink Code Inspector Dialog Box Overview
Control code inspection and compatibility checking for a model.

To get help on an option

1 Right-click the option’s text label.

2 Select What’s This from the popup menu.

See Also

• “Code Inspection”

• “Model Compatibility Checking”

7-4

Simulink Code Inspector Dialog Box

This is the top of the model hierarchy
Specify whether the model being configured for code inspection is the top
model in the model reference hierarchy.

Settings
Default: on

On
Code inspection (and code generation if requested) uses a top model
target.

Off
Code inspection (and code generation if requested) uses a model
reference target.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setTopModel.

See Also
“Code Inspection”

7-5

7 Simulink® Code Inspector™ Dialog Box Parameters

Inspect all referenced models
Specify whether model compatibility checking and code inspection should be
performed for all descendants of this model in the model reference hierarchy.

Settings
Default: off

On
Model compatibility checking and code inspection are performed for all
descendants of this model in the model reference hierarchy.

Off
Model compatibility checking and code inspection are performed only
for this model.

Dependencies
Selecting Inspect all referenced models changes the displayed name for
the option Omit model from code inspection if it fails compatibility
check to Omit models from code inspection if they fail compatibility
checks, and changes the displayed name of the button Check this model
to Check all models.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setFollowModelLinks.

See Also

• “Code Inspection”

• “Model Compatibility Checking”

7-6

Simulink Code Inspector Dialog Box

Omit model from code inspection if it fails
compatibility check
Specify whether code inspection terminates if a model fails compatibility
checking.

Settings
Default: off

On
Code inspection terminates if a model fails compatibility checking. Code
generation (if requested) also does not occur.

Off
Code inspection does not terminate if a model fails compatibility
checking.

Dependencies
Selecting the option Inspect all referenced models changes the displayed
name for this option from Omit model from code inspection if it fails
compatibility check to Omit models from code inspection if they fail
compatibility checks.

Command-Line Information
The equivalent Simulink Code Inspector configuration
method for selecting or clearing this option is
slci.Configuration.setTerminateOnIncompatibility.

See Also

• “Code Inspection”

• “Model Compatibility Checking”

7-7

7 Simulink® Code Inspector™ Dialog Box Parameters

Generate code before code inspection
Specify whether to generate code before code inspection.

Settings
Default: off

On
Generates model code at the beginning of code inspection.

Off
Uses previously generated model code for code inspection.

Dependencies
Selecting Generate code before code inspection disables the Code
placement and Code folder options, and changes the displayed name of the
button Inspect code to Generate and inspect code.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setGenerateCode.

See Also
“Code Inspection”

7-8

Simulink Code Inspector Dialog Box

Code placement
Specify code placement for code inspection.

Settings
Default: Embedded Coder default

Embedded Coder default
Specifies that previously generated code resides in the default folders
created by code generation.

Single folder
Specifies that previously generated code has been repackaged to reside
in a single, user-defined folder.

Dependencies

• Clearing the option Generate code before code inspection enables
the Code placement option.

• Selecting the value Single folder for Code placement enables the Code
folder parameter.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setCodePlacement.

See Also
“Code Inspection”

7-9

7 Simulink® Code Inspector™ Dialog Box Parameters

Code folder
Specify a folder containing previously generated code for code inspection.

Settings
Default: ''

Specifies the path to a folder containing previously generated code to be
inspected. Use this parameter only if you are inspecting generated code that
has been repackaged to reside in a single, user-defined folder.

Dependencies
This parameter is enabled by setting the value of the Code placement
parameter to Single folder.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setCodeFolder.

See Also
“Code Inspection”

7-10

Simulink Code Inspector Dialog Box

Report folder
Specify a report folder for code inspection.

Settings
Default: Subfolder slprj/slci relative to the location of the model.

Specifies the path to a folder in which code inspection should place code
inspection report artifacts.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setReportFolder.

See Also
“Code Inspection”

7-11

	toc
	Function Reference
	Code Inspection
	Model Compatibility Checking

	Class Reference
	Code Inspection

	Functions — Alphabetical List
	Model Configuration Constraints Reference
	About Model Configuration Constraints Reference
	Model Configuration Constraints
	Simulink Configuration Parameters
	Solver
	Data Import/Export
	Optimization
	Optimization: Signals and Parameters
	Diagnostics: Data Validity
	Diagnostics: Connectivity
	Diagnostics: Model Referencing
	Hardware Implementation
	Model Referencing
	Code Generation: General
	Code Generation: Comments
	Code Generation: Symbols
	Code Generation: Custom Code
	Code Generation: Interface
	Code Generation: SIL and PIL Verification
	Code Generation: Code Style
	Code Generation: Data Type Replacement
	Code Generation: Not in GUI

	Other Modelwide Attributes

	Block Constraints Reference
	About Block Constraints Reference
	Block Constraints — Alphabetical List
	All Blocks
	Abs
	Bus Assignment
	Bus Creator
	Bus Selector
	Constant
	Data Store Memory
	Data Store Read
	Data Store Write
	Data Type Conversion
	Data Type Duplicate
	Demux
	From
	Gain
	Goto
	Inport
	Logical Operator
	Math Function
	MinMax
	Model
	Multiport Switch
	Mux
	Outport
	Product
	Relational Operator
	Saturation
	Selector
	S-Function
	Signal Conversion
	Subsystem
	Sum, Add, Subtract
	Switch
	Terminator
	Trigonometric Function
	Unit Delay

	Supported Blocks — By Category
	Commonly Used Blocks
	Discontinuity Blocks
	Discrete Blocks
	Logic and Bit Operation Blocks
	Math Operation Blocks
	Port & Subsystem Blocks
	Signal Attribute Blocks
	Signal Routing Blocks
	Sink Blocks
	Source Blocks
	User-Defined Functions

	Model Advisor Checks
	Simulink Code Inspector Checks
	Simulink Code Inspector Checks Overview
	See Also

	Check code generation settings
	Description
	Results and Recommended Actions
	See Also

	Check data import/export settings
	Description
	Results and Recommended Actions
	See Also

	Check diagnostic settings
	Description
	Results and Recommended Actions
	See Also

	Check hardware implementation settings
	Description
	Results and Recommended Actions
	See Also

	Check model reference settings
	Description
	Results and Recommended Actions
	See Also

	Check optimization settings
	Description
	Results and Recommended Actions
	See Also

	Check solver settings
	Description
	Results and Recommended Actions
	See Also

	Check for unconnected objects in the model
	Description
	Results and Recommended Actions
	See Also

	Check system target file setting
	Description
	Results and Recommended Actions
	See Also

	Check function specification setting
	Description
	Results and Recommended Actions
	See Also

	Check model arguments
	Description
	Results and Recommended Actions
	See Also

	Check for unsupported blocks
	Description
	Results and Recommended Actions
	See Also

	Check for tunable workspace variables
	Description
	Results and Recommended Actions
	See Also

	Check for sample times in the model
	Description
	Results and Recommended Actions
	See Also

	Check for usage of global data stores
	Description
	Results and Recommended Actions
	See Also

	Check usage of Sources blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Signal Routing blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Math Operations blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Signal Attributes blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Logical and Bit Operations blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of User-Defined Function blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Ports and Subsystems blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Discontinuities blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Sinks blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Discrete blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of root Outport blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of buses
	Description
	Results and Recommended Actions
	See Also

	Simulink Code Inspector Dialog Box Parameters
	Simulink Code Inspector Dialog Box
	Simulink Code Inspector Dialog Box Overview
	To get help on an option
	See Also

	This is the top of the model hierarchy
	Settings
	Command-Line Information
	See Also

	Inspect all referenced models
	Settings
	Dependencies
	Command-Line Information
	See Also

	Omit model from code inspection if it fails compatibility check
	Settings
	Dependencies
	Command-Line Information
	See Also

	Generate code before code inspection
	Settings
	Dependencies
	Command-Line Information
	See Also

	Code placement
	Settings
	Dependencies
	Command-Line Information
	See Also

	Code folder
	Settings
	Dependencies
	Command-Line Information
	See Also

	Report folder
	Settings
	Command-Line Information
	See Also

